Molecular ‘muscles’ flex to external cell forces

If you have ever watched one of those weather people on television being buffeted about while trying to report on a hurricane, you might have some appreciation for what the life of a cell might be like inside a body.  New research from the cell biology laboratory of Doug Robinson, professor at the Johns Hopkins School of Medicine, reveals how the cell uses certain proteins to react and respond to these extreme external forces at the molecular level.

Cytoskeletal proteins move to different areas of a cell in response to the different forces created by suctioning with a thin glass tube. Robinson Lab

Cytoskeletal proteins move to different areas of a cell in response to the different forces created by suctioning with a thin glass tube. Robinson Lab

Graduate student Tianzhi Luo from the Robinson lab studied the cells experimentally by pulling on the cell’s outer membrane (or cytoskeleton) with a tiny glass vacuum tube. Images of fluorescently tagged membrane proteins were captured. Working with Pablo Iglesias, professor of electrical and computer engineering at the Whiting School of Engineering, and his graduate student, Krithika Mohan, the team developed a computer model to predict how cytoskeletal proteins would behave under certain physical forces. The work is summarized in the journal Nature Materials.

“For the first time,” said Robinson, “we are able to explain what a cell can do through the individual workings of different proteins, and because all cells use information about the forces in their environments to direct decisions about migration, division and cell fate, this work has implications for a whole host of cellular disorders including cancer metastasis and neurodegeneration.”

Read the full article paper here.

Read a press release about this research here.

Watch several videos demonstrating the computer model below.