Are cellular technologies scalable?

Are cellular technologies scalable? According to Phillip Vanek, Head of Innovation at Lonza Bioscience, the answer to this question is “yes”, but only if scaling is considered very early in the technology’s development. Vanek addressed the topic of scalability at his talk at the INBT symposium.

scalabilityScaling-up of bench-top science into industrial processes is difficult for a number of reasons. Commercial-scale production of cell-based products introduces regulatory challenges and production volumes never encountered on the bench scale. Even the basic laboratory chore of cell passage can become a large hurdle when attempting to grow large number of cells in the multi-layered cell factory system.

With such challenges in mind, Vanek lays out a number of ways to improve the success rate of scaling up processes. He stressed that a process should ideally be closed for maximum success. A closed process prevents product contamination and minimizes user error. Also, maximizing automation helps minimize operator error in processing.

Most importantly, the treatable patient pool sizes and dosage requirements need to be well-known for a process to be commercially successful. Vanek concluded that cellular technologies are scalable, but only if researchers start with end goals in mind early and are well-aware of potential pitfalls.

Lonza 

Editor’s Note: This a summary of one of the talks from the 2013 Nano-bio Symposium hosted by Johns Hopkins Institute for NanoBioTechnology held May 17. This summary was written by Christian Pick, a doctoral candidate in the chemical and biomolecular engineering laboratory of Joelle Frechette. Look for other symposium summaries on the INBT blog.