Probing and Attacking the Cancer Surfacome with Jim Wells, PhD
The cell surface proteome(surfaceome)is a major hub for cellular communication and a primary source of drug targets, especially for biologics. My lab is interested in developing proteomic means to probe how the surfaceome changes in health and disease, especially cancer. Such changes involve alteration in protein expression and post-translational modifications such as proteolysis. I’ll describe new engineered tools we have built to probe the surfaceome changes that occur when oncogenes are expressed in isogenic cell lines to identify targets of interest. We then target proteins either upregulated, proteolyzed or both with recombinant antibodies derived by phage display to be used as validation tools and potential therapeutic leads
Jim received his BA from University of California at Berkeley, PhD from Washington State University (with Ralph Yount), and post-doc at Stanford (with George Stark), prior to joining Genentech, then Sunesis Pharmaceuticals, and finally UCSF. Wells’ group pioneered the engineering of proteins, antibodies, and small molecules that target catalytic, allosteric, and protein-protein interaction sites; and technologies including protein phage display, alanine-scanning, engineered proteases, bioconjugations, N-terminomics, disulfide “tethering”, and more recently an industrialized recombinant antibody production pipeline for the proteome. His team was integral to several protein products including Somavert for acromegaly, Avastin for cancer, Lifitegrast for dry eye disease, and engineered proteases sold by Pfizer, Genentech, Shire and Genencor, respectively. He is an elected member of the US National Academy of Science, American Association of Arts and Science, and the National Academy of Inventors.
This is a virtual event on Zoom. Click here to get the link.

The Advances in Immunoengineering: Fundamentals and Cutting Edge Advances workshop is hosted by Johns Hopkins Translational Immunoengineering. The workshop meets twice a week for three weeks and participants are eligible for CME credit. The workshop is also offered as a two-credit course to Johns Hopkins students
The immunoengineering field is transforming cancer, autoimmunity, regeneration, and transplantation treatments by combining the diverse and complex fields of engineering and immunology. There is a significant need to train engineers in immunology and immunologists in quantitative engineering techniques. Moreover, there is a need to bridge basic immunological discoveries with advances in clinical application. This workshop will review immune system fundamentals and components, engineering strategies to modulate the immune system, and clinical applications.
After attending this workshop, the learner will demonstrate the ability to:
– Review the fundamentals and recent discoveries in the function of the immune system.
– Identify engineering strategies to manipulate the immune system.
– Describe the clinical applications of immunoengineering.
The full schedule, speakers, topics, and registration information are available on JH-TIE’s website.
Engineers Week is a national, annual celebration of the vital contributions that engineers make to our world. The schedule of events can be found on their website.
All are welcome to attend our 16th Nano-Bio Symposium on Cell Programming.
From Robert Hooke’s hazy observations to today’s single cell sequences and super-resolution images, cells have been a central focus of biological investigation. In 2023, the INBT’s Nano-Bio Symposium will explore breakthroughs in our ability to understand and program cells. Pioneering speakers will catalog the growing diversity of cell fate and cell state in multicellular organisms. Attendees will learn about powerful approaches to engineer cells using genetic, transcriptomic, and metabolic tools. And we will see how these methods are being translated into the clinic, ushering in a new era of powerful cellular therapies. By bringing together engineers, cell biologists, and translational scientists, the symposium will map the frontiers of this fundamental unit of biological organization.
This is event will feature lectures and a poster competition with a reception. Registration will be required.
More information coming soon.
The Whiting School’s annual Engineering Design Day showcases our students’ creativity, problem-solving skills, and desire to make their mark on the world as they translate knowledge gained in classrooms and labs into innovations that solve real-world problems.
Enjoy more than 200 student presentations, posters, and demos representing every academic department at the Whiting School, and speak with students about their work.
A draft schedule will be provided soon. For more information, visit the Design Day website, where you also can see examples of last year’s projects. Registration is now open and required.