Summer interns join PS-OC labs

Each summer, Johns Hopkins Institute for Nanobiotechnology (INBT) hosts several summer research interns, five of who will conduct research as part of Johns Hopkins Physical Sciences-Oncology Center.

Erin Heim, from University of Florida, will be testing the effects of cell geometry and chemotaxis on cell polarity in the Denis Wirtz lab (Chemical and Biomolecular Engineering). “The goal is to find which of the two is more important to polarity when working against each other,” she said.

Also in the Wirtz lab, Nick Trenton is developing an agarose-based microfluidics chamber that can be used to establish a chemotaxis gradient in 3D cell culture. “We’ll be testing various cell knockdowns in 3D in the presence of a chemokine gradient,” he said.

Rachel Louie from Johns Hopkins, works in the Peter Searson lab (Materials Science and Engineering). She is characterizing the properties of human umbilical vein endothelial cells cultured under different conditions. “We’re testing to see how the amount of growth factors in cell culture medium will affect transendothelial electrical resistance values,” Louie said.

Thea Roper from North Carolina State University works in the Sharon Gerecht lab (Chemical and Biomolecular Engineering). Roper said she will analyze how human embryonic stem cells mature into smooth muscle cells. “To do this, I must determine the pathway by using techniques such as immunofluorescence, RT-PCR, and Western Blot to examine Myocardin, a transcriptional co-activator, Elk-1, a ternary complex factor, PDGF-R, platelet-derived growth factor receptors, and SRF, serum response factors,” she said.

Quinton Smith also works in the Gerecht lab. This is his second year interning at Hopkins. Smith, from University of New Mexico, is fabricating a microfluidic device that recreates hypoxic (low oxygen) conditions. “I’ll study how adult and embryonic stem cells respond to this dynamic environment,” he said.

Read more about INBT’s summer interns at the following link: http://wp.me/p1sSPo-VT

 

Come to the NanoBio Film Festival 11 a.m., 6/29 in Krieger 205

Charli Dvoracek storyboarding a video. Photo by Mary Spiro

Johns Hopkins Institute for NanoBioTechnology (INBT) hosts the NanoBio Film Festival on June 29, 11 a.m. in Krieger 205. See the world premiere of three short videos made by members of INBT’s course on science communications. Free for Hopkins community.

Videos featured in this film festival describe the current research of students working in INBT affiliated laboratories. Students in the course learn how to communicate their work in nontechnical terms for general audiences. They work in teams to write, direct, film and produce the videos within a two-week time frame. The producers will be on hand to describe their experience making the videos and to answer questions.

The INBT film festival is part of the institute’s free professional development seminar series. Topics are geared toward undergraduate and graduate students.

Future seminars include:

  • July 13: Adam Steel, PhD, Director of Systems Engineering at Becton Dickinson, will discuss medical device development. Dr. Steel joined BD in 2005. Previously he was vice president of research and development at MetriGenix. He earned his PhD in analytical chemistry at the University of Maryland College Park and undergraduate degrees in chemistry and mathematics from Gettysburg College. He completed a postdoctoral fellowship in medical device development at the National Institutes of Standards and Technology.
  • July 27: Grant submission process and how to obtain funding; a roundtable discussion with INBT affiliated postdoctoral students.

For additional information on INBT’s professional development seminar series, contact Ashanti Edwards, INBT’s Academic Program Administrator at Ashanti@jhu.edu.

 

 

Johns Hopkins Integrated Imaging Center focuses on data

Shyenne Yang positions Drosophila embryos for fluorescence imaging. Photo by Marty Katz/baltimorephotographer.com

Heavy, black curtains and dimmed lights shroud the core of the Johns Hopkins Integrated Imaging Center (IIC). Yet researchers who peer through the advanced microscopes cloaked by these dark draperies view experimental samples more clearly than ever thanks to a combination of the high-tech equipment and the creative expertise offered by the center’s seven-member staff.

When describing Johns Hopkins University’s showpiece microscopy facility, it’s easy to rattle off a laundry list of available equipment and laboratory space able to prepare samples with nearly any contrasting agent found in the literature. The Homewood-based center contains devices that can image a sample in virtually any manner in 2-D, 3-D and even 4-D. IIC’s 3,500 square-foot facility comprising space in Dunning, Jenkins, and Olin Halls, boasts more than $7.5 million worth of state- of-the-art imaging equipment, including a Zeiss laser scanning microscope (LSM) 510 VIS confocal with a Confocor 3 fluorescence correlation spectroscopy (FCS) module—one of only a very few such uniquely configured laser scanning microscopes in the United States.

Director J. Michael McCaffery, a research professor in the Department of Biology at the Krieger School of Arts and Sciences, said the Hopkins community is thrilled to have access to such a versatile microscope with fluorescence correlation spectroscopy that is capable of cross-correlation analysis, with confocal imaging and a fully enclosed environmental system for live imaging. Researchers affiliated with Johns Hopkins Institute for NanoBioTechnology (INBT), the Johns Hopkins Physical Sciences Oncology Center and Center of Cancer Nanotechnology Excellence are also glad to have access to IIC’s menu of facilities.

“Fluorescence correlation spectroscopy allows for high-resolution spatial and temporal analysis of single biomolecules with respect to diffusion, binding, as well as enzymatic reactions in vitro and in vivo,” McCaffery said. In other words, you can see and measure a lot of really tiny stuff with it, something INBT affiliated researchers working at micron/nanometer resolutions are finding incredibly useful.

The center features multiple suites devoted to specific microscopy/imaging functions, as well as facilities for all manner of sample preparation. All these advanced tools help scientists and engineers characterize nanomaterials; and image cells, sub-cellular organelles, and biomolecules/ proteins at very small dimensions. But none of this fancy equipment would be of much use to researchers without the expertise of McCaffery and the IIC staff. McCaffery brings years of experience and a background in cell biology and microbiology. The center’s associate director, William Wilson, an associate research professor in the Department of Materials Science and Engineering at the Whiting School of Engineering, describes himself as a “chemist, turned physicist, who became an electrical engineer, who is now a materials scientist.”

Staff scientist Kenneth J.T. Livi, director of the IIC’s High-Resolution Analytical Electron Microbeam Facility located in Olin Hall, offers his unique perspective on earth and planetary sciences. Researchers can also consult with microscopy specialist/ trained biologist and FACS supervisor Erin Pryce, the FACS manager Yorke Zhang, computer/IT specialist Marcus Sanchez, and research assistants Leah Kim and Adrian Cotarelo, who both are currently earning their bachelor degrees in biology at Johns Hopkins.

From left, IIC director Michael McCaffery, FACS supervisor Erin Pryce, and associate director William Wilson with the BD FACSVantage SE. Photo by Mary Spiro

“Sometimes young researchers haven’t contemplated all the possibilities of how to use and apply an instrument; and don’t realize there are many different ways to utilize familiar tools in order to obtain new, in some cases better, information,” McCaffery said. “Our desire is always to approach a problem from many disparate perspectives to generate convergent data that corroborates each particular assay. Hopefully, results from each individual assay, allows the scientist to arrive at a convergent perspective that yields confidence in the results and conclusions.”

One of the easiest ways to obtain different microscopy data and improve corroboration among assays is simply to change the contrast mechanism.

“The most common contrast mechanisms used to image something are optical contrast (transparent versus opaque), polarization, and fluorescence,” said Wilson. “But there are many different ways you can manipulate how light interacts with the specimen and what you detect out of an objective.”

For example, ultrafast laser sources have made nonlinear optical forms of contrast an exciting new tool. Techniques like two-photon excited fluorescence and second harmonic generation (both available in the IIC) produce excellent spectral and structural information about samples because a smaller effective photon volume is excited. Wilson explained it like this: “Imagine turning your stereo all the way up and hearing the sound distorted. That distortion is created by the higher order acoustic harmonics from your stereo. The same happens with intense laser light resulting in new “colors” being generated from the object irradiated. The cool thing is that the different non-linear processes are often sensitive to different physical proper- ties or structural features, offering complementary information about your sample.”

In some cases, getting more detailed information simply requires looking at the right color range. The two-photon fluorescence and second harmonic signals appear at different wavelengths. If you excite a sample with enough energy to generate third order harmonics, that signal is detected at an even bluer wavelength, Wilson said. “With third harmonic generation, you only get signals from the interface of structures with no interference from anything else. This means you can simultaneously image fluorescence, polar order, and interface dynamics just by popping in a few filters and beam splitters,” he said.

“Over the past ten or so years, physicists and engineers focused on advanced microscopy, have produced better and more advanced laser and optical technologies, generating techniques that many researchers in the biological and biomedical sciences might not know exist,” Wilson said. “There also are a lot of applied physicists who are developing and using these new technologies who don’t know what an interesting sample is. We hope to help bridge this gap, becoming a place where these collaborative synergies can flourish.”

Sample preparation is another area where the center can help researchers. “Cell fractionation, for example, which is the breaking down of whole cells and separating them into their individual components, when combined with biochemical techniques and microscopy, can often allow researchers to pose more precise questions and to better analyze a biological problem,” McCaffery said.

“It is common for someone to come in and want to use a particular instrument or technique they read about in a paper,” McCaffery said. When that happens, McCaffery and Wilson are likely to give researchers “homework.”

“It’s important to remember that the goal is not to make a pretty picture,” Wilson said. “The goal is to answer a question, so sometimes we have to ask them, ‘What is your research question?’” An enviable set of microscopy tools combined with a team that brings years of training and experience from a variety of disciplines sets Johns Hopkins Integrated Imaging Center apart from the microscope on the individual researcher’s lab bench, as well as from facilities nationwide. Wherever possible, McCaffery said, IIC staff tries to be engaged in all of the research that is carried out in the center. “Simply, our involvement leads to better results and better science,” McCaffery added.

Researchers confirm this successful combination.

“The facilities at the IIC have allowed us to obtain critical information about the internal structure of our peptide nanomaterials that would have remained unknown without careful electron and fluorescence microscopy,” said J.D. Tovar, assistant professor of Chemistry. “Equally important, the scientific IIC staff members were vital participants making sure collaborative experiments were done meaningfully and students were trained competently. Our collaboration with Dr. Wilson has given some nice insights and at the same time has posed many more questions for future research.”

Praise like that for the IIC is always nice to hear, staff members say, but they emphasize that the services and tools they provide are just part of the job. “Part of being a scientist is learning not only how to gather information from a wide variety of tools but also understanding how to pose clear questions that lead to the right tools, in a nutshell, how to not waste time. If we can help you do that, then we have achieved our goal,” Wilson said.
This story originally appeared in Johns Hopkins Nano-Bio Magazine.

To read more about IIC’s facilities and services, go here.

Story by Mary Spiro

Photos by Mary Spiro and Marty Katz

 

Hopkins alumni learn about engineering in oncology

Denis Wirtz directs INBT’s Engineering in Oncology Center. Photo: Mary Spiro

As  part of Johns Hopkins Alumni Weekend 2011, Denis Wirtz, director of the Johns Hopkins Engineering in Oncology Center, gave a talk April 29 on how researchers are using physics and engineering to better understand cancer. Wirtz is the Theophilus H. Smoot Professor in the Whiting School of Engineering Department of Chemical and Biomolecular Engineering.

Wirtz spoke in Mason Hall Auditorium with about 100 alumni in attendance. He showed animations explaining the process of metastasis and concluded his remark with a viewing of the short movie “INBT: An Overview.” The audience seemed engaged and asked several questions following Wirtz’s presentation. The talk was presented for the Class of ’61 alumni.

Johns Hopkins Engineering in Oncology Center is a Physical Sciences-Oncology Center funded by the National Cancer Institute. It was established in 2009.

To see the full gallery of photos from this event, visit this link on the PS-OC  Facebook page.

Agenda, workshops set for Johns Hopkins cancer nanotech symposium

Hands-on workshops are part of this year’s INBT symposium. (Photo: Marty Katz/baltimorephotographer.com)

Cancer Nanotechnology forms  the focus of the fifth annual symposium for Johns Hopkins Institute for NanoBioTechnology (INBT), May 12 and 13, 2011 at the university’s Homewood campus. Friday, May 13 will feature a symposium with talks from a slate of faculty experts in nanotechnology, oncology, engineering and medicine, while hands-on workshops will be offered to small groups on Thursday, May 12.

Registration begins at 8:30 a.m. in Shriver Hall Auditorium. A poster session begins at 1:30 p.m. upstairs in the Clipper Room showcasing research from INBT affiliated faculty laboratories across several Johns Hopkins University divisions. Past symposiums have attracted as many as 500 attendees and more than 100 research posters. To register and to submit a poster, click here.

Agenda

Cancer Nanotechnology: The annual symposium of Johns Hopkins Institute for NanoBioTechnology

May 13, 2011, Shriver Hall

8:30-9:00 am: Registration, Lobby of Shriver Hall

9:00-9:05 am: Welcome/Introduction of Speakers, Denis Wirtz

9:05-9:35 am: “Why develop sensitive detection systems for abnormal DNA methylation in cancer?”

Stephen Baylin is Deputy Director, Professor of Oncology and Medicine, Chief of the Cancer Biology Division and Director for Research of The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

9:35-9:55 am: “Enabling cancer drug delivery using nanoparticles”

Anirban Maitra is a professor at Johns Hopkins School of Medicine with appointments in Pathology and Oncology at the Sol Goldman Pancreatic Research Center and secondary appointments in Chemical and Biomolecular Engineering at the Whiting School of Engineering and the McKusick-Nathans Institute of Genetic Medicine. Maitra co-directs Johns Hopkins Cancer Nanotechnology Training Center and is a project director in the CCNE.

9:55-10:15 am: “Epithelial Morphogenesis in Cancer Metastasis”

Gregory Longmore is a professor at the Washington University in St. Louis School of Medicine, Department of Medicine, Oncology Division, Molecular Oncology Section and the Department of Cell Biology and Physiology. Longmore is a project co-director at Johns Hopkins Physical Sciences-Oncology Center (PS-OC).

10:15-10:35 am: “A Translational Nanoparticle-Based Imaging Method for Cancer”

Martin Pomper is a professor at Johns Hopkins School of Medicine with a primary appointment in Radiology and secondary appointments in Oncology, Radiation Oncology, and Pharmacology and Molecular Sciences, as well as Environmental Health Sciences at the Johns Hopkins Bloomberg School of Public Health. Pomper co-directs Johns Hopkins Center of Cancer Nanotechnology Excellence (CCNE)

10:35-10:50 am: Break

10:50-10:55 am: Welcome/Introduction of Speakers, Anirban Maitra

10:55-11:15 am: “Cancer Cell Motility in 3-D”

Denis Wirtz is the Theophilus H. Smoot Professor of Chemical and Biomolecular Engineering in the Whiting School of Engineering at Johns Hopkins University. Wirtz is associate director of INBT and director of the Johns Hopkins Physical Sciences-Oncology Center, also known as the Engineering in Oncology Center. He has a secondary appointment in Oncology at the Johns Hopkins School of Medicine.

11:15-11:35 am: “MRI as a Tool for Developing Vaccine Adjuvants”

Hy Levitsky is a professor of Oncology, Medicine and Urology at the Johns Hopkins School of Medicine and the Scientific Director of the George Santos Bone Marrow Transplant Program. Levitsky is a project director at the Center of Cancer Nanotechnology Excellence (CCNE).

11:35-11:55 am: “Genetically Encodable FRET-based Biosensors for probing signaling dynamics”

Jin Zhang is an associate professor at Solomon H. Snyder Department of Neuroscience at Johns Hopkins School of Medicine with primary appointments in Pharmacology and Molecular Sciences and secondary appointments in Neuroscience, Oncology, and Chemical and Biomolecular Engineering.

11:55-12:00 pm: Adjourn/Concluding Remarks, Thomas Fekete, director of corporate partnerships, INBT

12:00-1:30 pm: Break

1:30-3:30 pm: Research Poster Session, Clipper Room, Shriver Hall

Workshops give hands-on experience to nano-bio researchers

In conjunction with the fifth annual symposium talks and poster session, Johns Hopkins Institute for NanoBioTechnology will hold hands-on laboratory workshops to introduce some of the methods developed by affiliated faculty. Space is limited to participate in the workshops, which will be held the afternoon of May 12 at INBT’s headquarters in Suite 100 of the New Engineering Building. Times, instructors and topics are listed below. If you are interested in signing up for one or more of the workshops, please contact INBT’s administrative coordinator Tracy Smith at TracyINBT@jhu.edu or call 410-516-5634.

For more information about INBT’s symposium go to: http://inbt.jhu.edu/outreach/symposium/twentyeleven/

Session A: 1-3 pm

1. Electrospinning of polymeric nanofibers for tissue engineering application: Nanofibrous materials are increasingly used in tissue engineering and regenerative medicine applications and for local delivery of therapeutic agents. Electrospinning is the most widely used method for producing nanofiber matrices because of its high versatility and capacity to generate nanofibers from a variety of polymer solutions or melts. It can generate fibers with diameters ranging from tens of nanometers to a few microns. This workshop will review the basic principle of electrospinning, investigate the effect of several key parameters on fiber generation, demonstrate the method to generate nanofiber mesh and nanofiber conduits, and discuss the potential applications for tissue engineering and repair.

Instructors: Russell Martin and Hai-Quan Mao (Mao Lab)

2. Particle tracking microrheology: This hands-on course will teach participants the fundamentals and applications of high-throughput approaches to cytometry, including cell morphometry and microrheology. These approaches are being used for rapid phenotyping of cancer cells.

Instructors: Wei-Chiang Chen, Pei-Hsun Wu, and Denis Wirtz (Wirtz Lab)

Session B: 3:30-5:30 pm

3. Synthesis of quantum dots for bioengineering: This workshop will provide a hands-on approach to the synthesis of CdSe QD cores and how to purify these cores from excess surfactant. A brief discussion how to successfully electrically passivate the cores will follow. Participants will be able to water solubilize core/shell QDs using pegylated lipids. Several methods for characterizing the QDs through the synthesis and water solubilization will be performed.

Instructors: Charli Dvoracek, Justin Galloway, and Jeaho Park (Searson Lab)

4. Microfluidics for studying cell adhesion: This workshop will focus on fabrication of an “artificial blood vessel” via photolithography to generate a micron-sized (cross-section) channel. The micro-channel will be connected to a syringe pump to initiate fluid flow simulating the blood flow inside a blood vessel. This tool can be used to study how cancer cells interact with “blood vessel” surface when coated with adhesion proteins.

Instructors: Tommy Tong and Eric Balzer (K. Konstantopoulos Lab)

Story by Mary Spiro

 

Cancer nanotechnology mini-symposium brings students together

Jeaho Park, predoctoral student affiliated with the CCNE,  presenting at the INBT mini-symposium on cancer nanotechnology. (Photo: Mary Spiro)

About 30 people attended a mini-symposium on cancer nanotechnology hosted by Johns Hopkins Institute for NanoBioTechnology March 23. The event showcased current research from nine students affiliated with its Physical Sciences-Oncology Center (PS-OC) and Center of Cancer Nanotechnology Excellence (CCNE). Talks began at 9 a.m. in Hackerman Hall Auditorium.

“We become so focused on our own research that we don’t know what other students are working on,” said Stephanie Fraley, a predoctoral candidate chemical and biomolecular engineering in the laboratory of Denis Wirtz. “The beauty of an event like this is that we get to see work from across the campuses and across disciplines, all in one morning.”

Researchers, who each spoke for 15 minutes and fielded questions from the audience,  included the following:

  • 9:00 – 9:15 - Jeaho Park (Peter Searson Lab, CCNE): Quantum dots for targeting cancer biomarkers
  • 9:15 – 9:30 - Stephanie Fraley (Denis Wirtz Lab, PSOC): Role of Dimensionality in Focal Adhesion Protein Localization and Function
  • 9:15 – 9:30 - Kelvin Liu, PhD, (Jeff Wang Lab, CCNE): Decoding Circulating Nucleic Acids in Serum Using Microfluidic Single Molecule Spectroscopy
  • 9:45 – 10:00 - Laura Dickinson (Sharon Gerecht Lab, PSOC): Functional surfaces to investigate cancer cell interactions with hyaluronic acid
  • 10:00 – 10:15 - Craig Schneider (Justin Hanes Lab, CCNE): Mucus-penetrating particles for the treatment of lung cancer
  • Break
  • 11:00 – 11:15 - Eric Balzer, PhD, (K. Konstantopoulos Lab, PSOC): Migrating tumor cells dynamically adapt to changes in environmental geometry
  • 11:15 – 11:30 - Venugopal Chenna (Anirban Maitra Lab, CCNE): Systemic Delivery of Polymeric Nanoparticle Encapsulated Small Molecule Inhibitors of Hedgehog Signaling Pathway for the Cancer therapy
  • 11:30 – 11:45 - Sam Walcott, PhD, (Sean Sun Lab, PSOC): Surface stiffness influences focal adhesion nucleation and decay initiation, but not growth or decay
  • 11:45 – 12:00 - Yi Zhang (Jeff Wang Lab, CCNE): A quantum dot enabled ultrahigh resolution analysis of gene copy number variation

Download the CCNE-PSOC mini symposium agenda here.

John Fini, director of intellectual property for the Homewood campus schools, also gave a presentation on intellectual property and work of Johns Hopkins Technology Transfer.  Plans are in the works for the cancer nanotechnology min-symposiums to occur each spring and fall.

Johns Hopkins Physical Sciences-Oncology Center (PS-OC), also known as the Engineering in Oncology Center, is funded by a grant from the National Cancer Institute and aims to unravel the physical underpinnings involved in the growth and spread of cancer. Johns Hopkins Center of Cancer Nanotechnology Excellence, also funded by a grant from the NCI, aims to use a multidisciplinary approach to develop nanotechnology-based tools and strategies for comprehensive cancer diagnosis and therapy and to translate those tools to the marketplace.

Sponsors needed for JHU nano-bio symposium

Andrew Wong and Noah Tremblay peruse the first issue of NanoBio Magazine (Photo by Charli Dvoracek/INBT)

Cancer Nanotechnology is the theme of the fifth annual symposium of Johns Hopkins Institute for NanoBioTechnology (INBT), May 12-13, 2011 at the university’s Homewood campus. Sponsors are needed to help offset the cost of publishing Nano-Bio magazine, which serves as the event’s program and to provide prizes for top poster presenters. The poster session will feature at least 80 research posters from INBT affiliated research laboratories.

If you or your organization would like to learn how to sponsor the INBT’s annual symposium, please contact our director of corporate partnerships, Tom Fekete, at tmfeke@jhu.edu or call him at 410-516-8891. Sponsors enjoy reduced rates on symposium-related events and advertising in our annual Nano-Bio magazine/symposium program, among other benefits.

Additionally, INBT also needs sponsors to donate prizes for the poster session. Books, gift cards, science-themed t-shirts and the like all make wonderful prizes for our student researchers. If your organization would like to donate a prize, please contact INBT’s science writer Mary Spiro at mspiro@jhu.edu or 410-516-4802.

For more details on the symposium, including a list of speakers, click here or go to http://inbt.jhu.edu/outreach/symposium/twentyeleven/

To learn more about sponsorship, click here or go to http://inbt.jhu.edu/outreach/symposium/twentyeleven/sponsorship-information/

Mini symposium highlights Johns Hopkins student work in cancer nanotechnology

Maureen Wanjara and Laura Dickinson, Johns Hopkins INBT predoctoral students from Sharon Gerecht’s lab (Photo: Marty Katz)

Johns Hopkins Institute for NanoBioTechnology will host a half-day mini-symposium on Wednesday, March 23 to showcase current research from students affiliated with its Engineering in Oncology Center and Center of Cancer Nanotechnology Excellence. Talks begin at 9 a.m. in Hackerman Hall Auditorium (Room B17) and will conclude by noon.

Students speaking include from the Whiting School of Engineering, predoctoral fellows in Chemical and Biomolecular Engineering Stephanie Fraley, Laura Dickinson, and Craig Schneider; and postdoctoral fellows Christopher Hale, Jaeho Park, and Eric Balzer. Speaking from Biomedical Engineering will be predoctoral fellow Yi Zhang and undergradute Kelvin Liu; and in Mechanical Engineering postdoctoral fellow Sam Walcott. Also giving presentations are predoctoral fellow Dipankar Pramanik in Pathology at the Johns Hopkins School of Medicine and John Fini, director of intellectual property for the Homewood campus schools.

Johns Hopkins Engineering in Oncology Center, a Physical Sciences-Oncology Center (PS-OC) funded by a grant from the National Cancer Institute, aims to unravel the physical underpinnings involved in the growth and spread of cancer. Johns Hopkins Center of Cancer Nanotechnology Excellence, also funded by a grant from the NCI, aims to use a multidisciplinary approach to develop nanotechnology-based tools and strategies for comprehensive cancer diagnosis and therapy and to translate those tools to the marketplace.

There is no need to RSVP for the mini-symposium. All Johns Hopkins students, faculty and staff are welcome to attend.

John Hopkins Institute for NanoBioTechnology

Engineering in Oncology Center

Center of Cancer Nanotechnology Excellence

Cancer Nanotechnology theme of INBT’s symposium, May 12-13

The Denis Wirtz lab research centers on investigations of cell micromechanics, cell architecture, nuclear shape and gene expression. Shown are healthy mouse cells with flurorescent staining of the nucleus (blue) and microtubules (green) emanating from the microtubule organizing center (red). (Photo: Wirtz Lab/JHU)

Nanoscale tools developed by engineers have yet to be fully explored and exploited for the diagnosis and treatment of diseases such as cancer. Nanotechnology for Cancer Medicine forms the focus of the fifth annual symposium for Johns Hopkins Institute for NanoBioTechnology (INBT), May 12 and 13, 2011 at the university’s Homewood campus.

Friday, May 13 will feature a symposium with talks from a slate of faculty experts in nanotechnology, oncology, engineering and medicine. Registration begins at 8:30 a.m. in Shriver Hall Auditorium.  A poster session begins at 1:30 p.m. upstairs in the Clipper Room showcasing research from INBT affiliated faculty laboratories across several Johns Hopkins University divisions. Past symposiums have attracted as many as 500 attendees and more than 100 research posters.

Keep checking INBT’s 2011 symposium page for updated information on speakers and more details on how to register and submit a poster title. The symposium and poster session are free for Johns Hopkins affiliated faculty, staff and students.

Keynote Speaker

Stephen B. Baylin is currently Deputy Director, Professor of Oncology and Medicine, Chief of the Cancer Biology Division and Director for Research, of The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.For the last 20 years, Stephen Baylin has studied the role of epigenetic gene silencing in the initiation and progression of human cancer. He and his colleagues have fostered the concept that DNA hypermethylation of gene promoters, and associated transcriptional silencing, can serve as an alternative to mutations for producing loss of tumor suppressor gene function. They have described some of the classic genes involved, invented approaches to randomly screen the cancer genome for such genes and to demonstrate their functional role in cancer progression, helped begin unravel the molecular mechanisms responsible for the initiation and maintenance of the gene silencing, and worked to utilize all of their findings for translational purposes.  Baylin has authored or co-authored over 375 full-length publications on the above and other areas of cancer biology.

Stephen Baylin will present the keynote talk at the 2011 Johns Hopkins Nano-Bio Symposium

He has been a member of committees of the American Cancer Society and of National Institutes of Health, and his honors include a Research Career Development Award from NIH, the Edwin Astwood Lectureship of the Endocrine Society, the 2003 Jack Shultz Memorial Lecture in Genetics, Fox Chase  Cancer Center, The 2004 National Investigator of the Year Award from the National Cancer Institute SPORE program, the Jack Gibson Visiting Professorship, University of Hong Kong Queen Mary Hospital, Hong Kong, The 2004 2nd Annual Sydney E. Salmon Lectureship in Translational Research, Arizona Cancer Center, the 2005 Shubitz Cancer Research Prize from the University of Chicago, and he currently holds the Virginia and D.K. Ludwig Chair in Cancer Research at Johns Hopkins. Baylin is also recipient of the 2007 Woodward Visiting Professor, Memorial Sloan-Kettering Cancer Center, the 2008 Raffaele Tecce Memorial Lecture, Trento, Italy, the 2008 The David Workman Memorial Award (jointly with Peter A. Jones, Ph.D.) from the Samuel Waxman Foundation, and the 2009 Kirk A. Landon-AACR Prize for Basic Cancer Research, also shared with Peter A. Jones, the 14th NCI Alfred G. Knudson Award in Cancer Genetics, and, most recently, the Nakahara Memorial Lecture prize at the 2010 Princess Takematsu  Symposium. Currently, he leads, with Peter Jones, the Epigenetic Therapy Stand up to Cancer Team.

Additional confirmed speakers for the 2011 INBT Symposium include:

  • Martin Pomper is a professor at Johns Hopkins School of Medicine with a primary appointment in Radiology and secondary appointments in Oncology, Radiation Oncology, and Pharmacology and Molecular Sciences, as well as Environmental Health Sciences at the Johns Hopkins Bloomberg School of Public Health. Pomper co-directs Johns Hopkins Center of Cancer Nanotechnology Excellence (CCNE).
  • Anirban Maitra is a professor at Johns Hopkins School of Medicine with appointments in Pathology and Oncology at Sol Goldman Pancreatic Research Center and secondary appointments in Chemical and Biomolecular Engineering at the Whiting School of Engineering and the McKusick-Nathans Institute of Genetic Medicine. Maitra co-directs Johns Hopkins Cancer Nanotechnology Training Center and is a project director in the CCNE.
  • Jin Zhang is an associate professor at Solomon H. Snyder Department of Neuroscience at Johns Hopkins School of Medicine with primary appointments in Pharmacology and Molecular Sciences and secondary appointments in Neuroscience, Oncology, and Chemical and Biomolecular Engineering.
  • Hy Levitsky is a professor of Oncology, Medicine and Urology at the Johns Hopkins School of Medicine and the Scientific Director of the George Santos Bone Marrow Transplant Program. Levitsky is a project director at the Center of Cancer Nanotechnology Excellence (CCNE).
  • Gregory Longmore is a professor at the Washington University in St. Louis School of Medicine, Department of Medicine, Oncology Division, Molecular Oncology Section and the Department of Cell Biology and Physiology. Longmore is a project co-director at Johns Hopkins Physical Sciences-Oncology Center (PS-OC).
  • Denis Wirtz is the Theophilus H. Smoot Professor of Chemical and Biomolecular Engineering in the Whiting School of Engineering at Johns Hopkins University. Wirtz is associate director of INBT and director of the Johns Hopkins Physical Sciences-Oncology Center, also known as the Engineering in Oncology Center. He has a secondary appointment in Oncology at the Johns Hopkins School of Medicine.

Workshops

During the afternoon of May 12, INBT will hold four 2-hour hands-on laboratory workshops organized by faculty affiliated with INBT, PS-OC or CCNE. Workshop registration will be limited to 10 persons per session. Sessions will begin at 1 and 3:30 p.m. and will be held in the New Engineering Building. Workshop details, including any costs, are forthcoming.

Become a sponsor

If you or your organization would like to learn how to sponsor INBT’s annual symposium, please contact our director of corporate partnerships, Tom Fekete, at tmfeke@jhu.edu or call him at 410-516-8891. Sponsors enjoy reduced rates on symposium-related events and advertising in our annual Nano-Bio magazine/symposium program, among other benefits.

Media inquiries may be directed to Mary Spiro, science writer and media relations director for INBT, at mspiro@jhu.edu or 410-516-4802.

JHU Applied Physics Lab hosting 2nd Annual Nanomaterials Symposium

The Johns Hopkins Applied Physics Laboratory will host its 2nd Annual Nanomaterials Symposium on Monday, March 14 from 8:30 a.m. to 5 p.m. in the Kossiakoff Conference and Education Center, 11100 Johns Hopkins Road, Laurel, Md. 20723-6099. Come hear stimulating talks and network with speakers, attendees, and
sponsor panelists. Includes a special session for students on postdoctoraal and internship opportunities. Submit a poster for the poster session.

The symposium is FREE for students, but $25 for all others, and lunch is included.

Deadline to register is 5 p.m. March 8. Register online here.

Invited speakers include:

  • Jonah Erlebacher, Johns Hopkins University/INBT
  • Jason Benkoski, JHU Applied Physics Laboratory/INBT
  • Lourdes Salamanca-Riba, University of Maryland College Park
  • Hai-Quan Mao, Johns Hopkins University/INBT
  • Theodosia Gougousi, University of Maryland Balitmore County
  • Gary Rubloff, University of Maryland College Park
  • Brian Holloway, Defense Advanced Research Projects Agency

For additional information:

Johns Hopkins Applied Physics Lab

240-228-9166