Five Hopkins students conduct nano research in Belgium

Each summer, Johns Hopkins Institute for NanoBioTechnology (INBT) has funding to support several summer research internships abroad. The International Research Experience for Students (IRES) program, funded by the National Science Foundation, provides support for students to work with researchers at The Inter-University MircroElectronics Centre (IMEC) in Leuven, Belgium. Students work at IMEC’s world-class microfabrication facility and learn to design, fabricate and test a wide range of biomedical devices.

Internships can last two to three months, although they can be much shorter depending on the project. They include travel expenses, accommodation and a stipend. The IRES program is open to Johns Hopkins undergraduate and graduate students.

Students are selected through discussions with and recommendation from their advisers. Interns selected must also have a research project that is mutually of interest to investigators at both Johns Hopkins and IMEC. Interested students should contact INBT’s Academic Program Administrator Ashanti Edwards (ashanti@jhu.edu) to being the process of applying for upcoming internships.

During the summer of 2012 five students from Johns Hopkins conducted research at IMEC. They included the following:

Gregg Duncan is a doctoral student in the lab of Michael Bevan, associate professor of chemical and biomolecular engineering. Duncan used dark field microscopy to quantify nanoparticle-cell interactions.

Colin Paul is a doctoral student in the lab of Konstantinos Konstantopoulos, professor and chair of the Department of Chemical and Biomolecular Engineering. Paul brought cell migration devices fabricated in the Konstantopoulos lab to IMEC to perform proof-of-concept experiments with Nicolas Barbera (see below).

Nicolas Barbera is a rising senior working in the Konstantopoulos lab. Barbera gained skills in fluorescence microscopy, dark field microscopy and hyperspectral imaging.

Sarah Friedrich is a doctoral student from the laboratory of Andre Levchenko, professor of biomedical engineering. Friedrich worked on a platform that could expose cells to both chemical and topographical stimulation at the same time.

Peter Nelson is a rising sophomore working in the lab of Jordan Green, assistant professor of biomedical engineering. Nelson worked developing on a polymer-nanoparticle with the ability to apply hyperthermia (heat) and chemotherapy treatments.

Story by Mary Spiro 

In vivo visualization of angiogenesis during wound healing featured on journal cover

Laser speckle contrast images showing (l-r) sequential images of the in vivo blood flow changes that occur on days 0, 3, 5, 7, 10 and 12 after wound creation.

Innovative ways of imaging wound healing can reveal much about blood vessel remodeling and blood flow following an injury. Researchers in the Russell H. Morgan Department of Radiology and Radiological Science and Department of Biomedical Engineering at the Johns Hopkins University School of Medicine have developed a method for using laser speckle contrast imaging (LSCI) to elucidate the changes that occur in the microvasculature over time as a wound heals. Researchers in the laboratory of Arvind P. Pathak have visualized the wound healing process in a mouse ear model by capturing images of angiogenesis—or the development of new blood vessels—over a 12-day period.

“LSCI is a powerful tool for observing the architecture and remodeling of microvasculature as well as the hemodynamic changes (blood flow) during angiogenesis,” said Pathak, an assistant professor of radiology and oncology and principal investigator on the study. “Being able to watch this process occur in a living animal helps us better understand the role of the vasculature during various phases of the wound healing process.”

Stunning images obtained from their experiments were featured on the cover of the March issue of the journal Angiogenesis. The LSCI images shown on the cover from left to right are sequential images of the in vivo blood flow changes that occur on days 0, 3, 5, 7, 10 and 12 after wound creation. The “hotter” colors indicate higher blood flow. The background image is a grayscale LSCI image from an uninjured mouse ear.

Wound healing typically proceeds in three phases, Pathak explained: inflammation (which initiates the immune response and recruits immune cells and molecules to the injury), proliferation (the formation of new blood vessels and epithelium) and remodeling (which removes the vascular scar created during blood vessel formation). LSCI is ideal for imaging the progression of each phase because it can monitor in vivo changes in microvascular architecture and hemodynamics at the same time, he said.

LSCI images are created when tissue illuminated by a laser is photographed through a small aperture, explained Pathak. “The resulting images exhibit a random interference pattern, also called a ‘speckle’ pattern. In blood vessels, this speckle pattern shifts due to the orderly motion of red blood cells, causing a blur over the exposure time of the camera. The degree of blurring in the LSCI image is proportional to the velocity of blood in the vessels and constitutes the biophysical basis of LSCI. Therefore, LSCI can distinguish blood vessels in tissue without any fluorescent dye or contrast agent.”

In this way, Pathak added, LSCI is capable of “wide area mapping” of the tissue, allowing us to measure not only the length and perfusion of blood vessels but their tortuosity (twistiness) and the overall flow of blood to the wound site as healing progresses.

In addition to angiogenesis research, the imaging method has practical applications in drug testing, Pathak said. “Using LSCI alongside a drug study would provide better insight into the efficacy of drug delivery and therapeutic outcome,” he said.

The lead author of the paper was Abhishek Rege, a graduate student in biomedical engineering co-mentored by Pathak and Nitish V. Thakor, professor of biomedical engineering in whose neuroengineering laboratory LSCI was developed. Kevin Rhie, a research technician in Pathak’s laboratory was the other author on this study.

This work was supported jointly by a Johns Hopkins Institute for NanoBiotechnology (INBT) Junior Faculty Pilot Award to Pathak, and grants from the National Institute of Aging and the Department of Health and Human Services to Thakor.

Story by Mary Spiro

Device with tiny ‘speed bumps’ sorts cells

These illustrations show magnetically labeled circulating tumor cells (shown as yellow spheres), together with red, white and platelet cells, attempting to travel over an array of slanted ramps. The ramps act as speed bumps, slowing the tumor cells.. (Illustration by Martin Rietveld)

In life, we sort soiled laundry from clean; ripe fruit from rotten. Two Johns Hopkins engineers say they have found an easy way to use gravity or simple forces to similarly sort microscopic particles and bits of biological matter—including circulating tumor cells.

In the May 25 online issue of Physical Review LettersGerman Drazer, an assistant professor of chemical and biomolecular engineering, and his doctoral student, Jorge A. Bernate, reported that they have developed a lab-on-chip platform, also known as a microfluidic device, that can sort particles, cells or other tiny matter by physical means such as gravity. By moving a liquid over a series of micron-scale high diagonal ramps—similar to speed bumps on a road—the device causes microscopic material to separate into discrete categories, based on weight, size or other factors, the team reported.

As the tumor cells slow, the flow carries them along the length of the ramp, causing lateral displacement. After the tumor cells traverse an array of these ramps, they have sufficiently been displaced and can be continuously isolated from other cells in the sample. (Illustration by Martin Rietveld)

The process described in the journal article could be used to produce a medical diagnostic tool, the Whiting School of Engineering researchers say. “The ultimate goal is to develop a simple device that can be used in routine checkups by health care providers,” said doctoral student Bernate, who is lead author on the paper. “It could be used to detect the handful of circulating tumor cells that have managed to survive among billions of normal blood cells. This could save millions of lives.”

Ideally, these cancer cells in the bloodstream could be detected and targeted for treatment before they’ve had a chance to metastasize, or spread cancer elsewhere. Detection at early stages of cancer is critical for successful treatment.

How does this sorting process occur? Bernate explained that inside the microfluidic device, particles and cells that have been suspended in liquid flow along a “highway” that has speed-bump-like obstacles positioned diagonally, instead of perpendicular to, the path. The speed bumps differ in height, depending on the application.

“As different particles are driven over these diagonal speed bumps, heavier ones have a harder time getting over than the lighter ones,” the doctoral student said. When the particles cannot get over the ramp, they begin to change course and travel diagonally along the length of the obstacle. As the process continues, particles end up fanning out in different directions.

“After the particles cross this section of the ‘highway,’” Bernate said, “they end up in different ‘lanes’ and can take different ‘exits,’ which allows for their continuous separation.”

Gravity is not the only way to slow down and sort particles as they attempt to traverse the speed bumps. “Particles with an electrical charge or that are magnetic may also find it hard to go up over the obstacles in the presence of an electric or magnetic field,” Bernate said. For example, cancer cells could be “weighted down” with magnetic beads and then sorted in a device with a magnetic field.

The ability to sort and separate things at the micro- and nanoscale is important in many industries, ranging from solar power to bio-security. But Bernate said that a medical application is likely to be the most promising immediate use for the device.

He is slated to complete his doctoral studies this summer, but until then, Bernate will continue to collaborate with researchers in the lab of Konstantinos Konstantopoulos, professor and chair of the Department of Chemical and Biomolecular Engineering, and with colleagues at InterUniversity Microelectronics Center, IMEC, in Belgium. In 2011, Bernate spent 10 weeks at IMEC in a program hosted by Johns Hopkins’ Institute for NanoBioTechnology and funded by the National Science Foundation.

His doctoral adviser, Drazer, said, the research described in the new journal article eventually led Jorge down the path at IMEC to develop a device that can easily sort whole blood into its components. A provisional patent has been filed for this device.

The research by Bernate and Drazer was funded in part by the National Science Foundation and the National Institutes of Health.

Story by Mary Spiro.

Related links:

 

 

German Drazer’s Web page: http://microfluidics.jhu.edu/

Department of Chemical and Biomolecular Engineering: http://www.jhu.edu/chembe/

INBT obtains funding for engineering and science missions

Johns Hopkins students helped develop a bicycle-powered grain mill in Tanzania.

Engineering Missions for Graduate Student Education and Local Innovation

Applications are now being accepted for Global Engineering Innovation projects designed to give Johns Hopkins’ graduate students and select undergraduates an opportunity to investigate and tackle engineering challenges in the developing world. Undergraduate and graduate opportunities are available. Application deadline is April 5, 2013.

An information session on the Global Engineering Innovation program will be held on April 12  at 6 p.m. in  room G40 (ground floor conference room) in the New Engineering Building.

Johns Hopkins Institute for NanoBioTechnology has obtained funding to support three engineering mission teams composed of two to four students at a variety of international host sites. Teams will be mentored by an engineering faculty and a faculty member from the host site. Budgets, time lines and project plans will be developed by the team members with assistance by the host site faculty member.

To be eligible to apply, undergraduate and graduate students should be science or engineering majors (other majors will be considered if a fit is evident based on application material). Teams can be predefined by the students prior to applying but each team member must submit all application material. We will attempt to keep predefined teams together but the final decision will be made by the coordination committee (we will add or remove members if we feel a better team composition can be made).

To apply for this unique opportunity, send the following items to Ashanti Edwards at ashanti@jhu.edu.

  • Your resume including any outreach experience (domestic or international) and any foreign language capability (not required)
  • A brief (300 words max.) statement of your interest in Global Engineering Innovation
  • The name and contact information of at least one referee, preferably your faculty research advisor (or academic advisor for undergraduate students)

After teams, mentors and challenges are defined, the team or team leader will travel to the site to further evaluate challenge and design constraints. After return to Baltimore, the teams will meet to further research the challenge and brainstorm potential solutions. The JHU School for Advanced International Studies (SAIS) will be consulted so that students will be aware of the social and political atmosphere that may impact utilization and potential distribution of the engineering solutions. By the end of the first year, the students will have designed a working prototype. The teams will then travel to the Global Site with their working prototype to test solution feasibility and modify as needed. If successful, potential avenues of translation will be investigated with advisory board members with relevant experience.

 

Students talk cancer nanotech at Homewood March 21

Students affiliated with the Center of Cancer Nanotechnology Excellence (CCNE) and the Physical Sciences-Oncology Center (PS-OC) at Johns Hopkins University have organized a spring mini-symposium for March 21, 10 a.m. in the Hackerman Hall Auditorium at the Johns Hopkins University Homewood campus.

The student-run mini-symposiums aim to bring together researchers from across the campus affiliated with the PS-OC and CCNE. Graduate students training in these centers, both administered by Johns Hopkins Institute for NanoBioTechnology, work in various disciplines from physics to engineering to the basic biological sciences but with an emphasis on understanding cancer metastasis and developing methods for cancer diagnosis or therapy.

The invited speaker for the symposium is postdoctoral researcher Megan Ho of Duke University. Ho earned her PhD in mechanical engineering in the Wang lab in 2008. She is currently focused on developing microfluidic devices to investigate and control the fundamental reactions that form nanocomplexes for gene delivery. (10 a.m.)

Student apeakers, who will talk for 15 minutes, include:

  • Jane Chisholm (Justin Hanes lab/Ophthalmology): Cisplatin nanocomplexes for the local treatment of small cell lung cancer (10:20 a.m.)
  • Yunke Song (Jeff Wang Lab/Mechanical Engineering): Single Quantum Dot-Based Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction (10:35 a.m.)
  • Andrew Wong (Peter Searson Lab/Materials Science and Engineering): Intravisation into an artificial blood vessel (10:50 a.m.)
  • Brian Keeley: (Jeff Wang Lab/Mechanical Engineering): Overcoming detection limitations of DNA methylation in plasma and serum of cancer patients through utilization of nanotechnology. (11:05 a.m.)
  • Sebastian Barretto (Sharon Gerecht Lab/Chemical and Biomolecular Engineering): Development of Hydrogel Microfibers to Study Angiogenesis (11:20 a.m.)

View the symposium flyer here. The mini-symposium is free and open to the entire Johns Hopkins University community. No RSVP is required, although seating is limited.

Johns Hopkins Physical Sciences-Oncology Center

Center of Cancer Nanotechnology Excellence

Engineered hydrogel helps grow new, scar-free skin

In early testing, this hydrogel, developed by Johns Hopkins researchers, helped improve healing in third-degree burns. Photo by Will Kirk/HomewoodPhoto.jhu.edu

Johns Hopkins researchers have developed a jelly-like material and wound treatment method that, in early experiments on skin damaged by severe burns, appeared to regenerate healthy, scar-free tissue.

In the Dec. 12-16 online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported their promising results from mouse tissue tests. The new treatment has not yet been tested on human patients. But the researchers say the procedure, which promotes the formation of new blood vessels and skin, including hair follicles, could lead to greatly improved healing for injured soldiers, home fire victims and other people with third-degree burns.

The treatment involved a simple wound dressing that included a specially designed hydrogel—a water-based, three-dimensional framework of polymers. This material was developed by researchers at Johns Hopkins’ Whiting School of Engineering, working with clinicians at the Johns Hopkins Bayview Medical Center Burn Center and the Department of Pathology at the university’s School of Medicine.

Third-degree burns typically destroy the top layers of skin down to the muscle. They require complex medical care and leave behind ugly scarring. But in the journal article, the Johns Hopkins team reported that their hydrogel method yielded better results. “This treatment promoted the development of new blood vessels and the regeneration of complex layers of skin, including hair follicles and the glands that produce skin oil,” said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who was principal investigator on the study.

Guoming Sun, left, a postdoctoral fellow, and Sharon Gerecht, an assistant professor of chemical and biomolecular engineering, helped develop a hydrogel that improved burn healing in early experiments. Photo by Will Kirk/HomewoodPhoto.jhu.edu

Gerecht said the hydrogel could form the basis of an inexpensive burn wound treatment that works better than currently available clinical therapies, adding that it would be easy to manufacture on a large scale. Gerecht suggested that because the hydrogel contains no drugs or biological components to make it work, the Food and Drug Administration would most likely classify it as a device. Further animal testing is planned before trials on human patients begin. But Gerecht said, “It could be approved for clinical use after just a few years of testing.”

John Harmon, a professor of surgery at the Johns Hopkins School of Medicine and director of surgical research at Bayview, described the mouse study results as “absolutely remarkable. We got complete skin regeneration, which never happens in typical burn wound treatment.”

If the treatment succeeds in human patients, it could address a serious form of injury. Harmon, a coauthor of the PNAS journal article, pointed out that 100,000 third-degree burns are treated in U. S. burn centers like Bayview every year. A burn wound dressing using the new hydrogel could have enormous potential for use in applications beyond common burns, including treatment of diabetic patients with foot ulcers, Harmon said.

Guoming Sun, Gerecht’s Maryland Stem Cell Research Postdoctoral Fellow and lead author on the paper, has been working with these hydrogels for the last three years, developing ways to improve the growth of blood vessels, a process called angiogenesis. “Our goal was to induce the growth of functional new blood vessels within the hydrogel to treat wounds and ischemic disease, which reduces blood flow to organs like the heart,” Sun said. “These tests on burn injuries just proved its potential.”

Gerecht says the hydrogel is constructed in such a way that it allows tissue regeneration and blood vessel formation to occur very quickly. “Inflammatory cells are able to easily penetrate and degrade the hydrogel, enabling blood vessels to fill in and support wound healing and the growth of new tissue,” she said. For burns, the faster this process occurs, Gerecht added, the less there is a chance for scarring.

Originally, her team intended to load the gel with stem cells and infuse it with growth factors to trigger and direct the tissue development. Instead, they tested the gel alone. “We were surprised to see such complete regeneration in the absence of any added biological signals,” Gerecht said.

Sun added, “Complete skin regeneration is desired for various wound injuries. With further fine-tuning of these kinds of biomaterial frameworks, we may restore normal skin structures for other injuries such as skin ulcers.”

Gerecht and Harmon say they don’t fully understand how the hydrogel dressing is working. After it is applied, the tissue progresses through the various stages of wound repair, Gerecht said. After 21 days, the gel has been harmlessly absorbed, and the tissue continues to return to the appearance of normal skin.

The hydrogel is mainly made of water with dissolved dextran—a polysaccharide (sugar molecule chains). “It also could be that the physical structure of the hydrogel guides the repair,” Gerecht said. Harmon speculates that the hydrogel may recruit circulating bone marrow stem cells in the bloodstream. Stem cells are special cells that can grow into practically any sort of tissue if provided with the right chemical cue. “It’s possible the gel is somehow signaling the stem cells to become new skin and blood vessels,” Harmon said.

Additional co-authors of the study included Charles Steenbergen, a professor in the Department of Pathology; Karen Fox-Talbot, a senior research specialist from the Johns Hopkins School of Medicine; and physician researchers Xianjie Zhang, Raul Sebastian and Maura Reinblatt from the Department of Surgery and Hendrix Burn and Wound Lab. From the Whiting School’s Department of Chemical and Biomolecular Engineering, other co-authors were doctoral students Yu-I (Tom) Shen and Laura Dickinson, who is a Johns Hopkins Institute for NanoBioTechnology (INBT) National Science Foundation IGERT fellow. Gerecht is an affiliated faculty member of INBT.

The work was funded in part by the Maryland Stem Cell Research Fund Exploratory Grant and Postdoctoral Fellowship and the National Institutes of Health.

The Johns Hopkins Technology Transfer staff has filed a provisional patent application to protect the intellectual property involved in this project.

Related links:

Sharon Gerecht’s Lab

Johns Hopkins Burn Center

Johns Hopkins Institute for NanoBioTechnology

 

Story by Mary Spiro

Engineers put a new ‘twist’ on lab-on-a-chip

Close-up of a cylindrically-shaped microfluidic device with two fluorescent solutions flowing through. Reproduced with permission from Nature Communications.

A leaf works something like a miniature laboratory. While the pores on the leaf surface allow it to channel nutrients in and waste products away from a plant, part of a leaf’s function also lies in its ability to curl and twist. Engineers use polymers to create their own mini-labs, devices called “labs-on-a-chip,” which have numerous applications in science, engineering and medicine. The typical flat, lab on a chip, or microfluidic device, resembles an etched microscopy cover slip with channels and grooves.

But what if you could get that flat lab-on-a-chip to self-assemble into a curve, mimicking the curl, twist or spiral of a leaf? Mustapha Jamal, a PhD student and IGERT fellow from Johns Hopkins Institute for NanoBioTechnology, has created a way to make that so.

Jamal is the lead author on “Differentially photo-crosslinked polymers enable self-assembling microfluidics,” published November 8, 2011 in Nature Communications. Along with principle investigator David Gracias, associate professor of Chemical and Biomolecular Engineering in the Whiting School of Engineering, and fellow graduate student Aasiyeh Zarafshar, Jamal has developed, for the first time, a method for creating three-dimensional lab-on-a-chip devices that can curl and twist.

The process involves shining ultraviolet (UV) light on a film of a substance called SU-8. Film areas closer to the light source become more heavily crosslinked than layers beneath, which on solvent conditioning creates a stress gradient.

Immersing the film in water causes the film to curl. Immersion in organic solvents like acetone causes the film to flatten. The curling and flattening can be reversed. The result, Jamal said, is the “self-assembly of intricate 3D devices that contain microfluidic channels.” This simple method, he added, can “program 2D polymeric (SU-8) films such that they spontaneously and reversibly curve into intricate 3D geometries including cylinders, cubes and corrugated sheets.”

Members of the Gracias lab have previously created curving and folding polymeric films consisting of two different materials. This new method achieves a stress gradient along the thickness of a single substance. “This provides considerable flexibility in the type and extent of curvature that can be created by varying the intensity and direction of exposure to UV light,” Gracias said.

Gracias explained that the method works with current protocols and materials for fabricating flat microfluidic devices. For example, one can design a 2D film with one type of lab-on-a-chip network, and then use their method to shape it into another geometry, also with microfluidic properties.

Fluorescent image of curved, self-assembled microfluidic device. Reproduced with permission from Nature Communications.

“Since our approach is compatible with planar lithography methods, we can also incorporate optical elements such as split ring resonators that have unique optical features. Alternatively, flexible electronic circuits could be incorporated and channels could be used to transport cooling fluids” Gracias said.

Tissue engineering is among the many important applications for 3D microfluidic devices, Gracias said. “Since many hydrogels can be photopolymerized, we can use the methodology of differential cross-linking to create stress gradients in these materials,” Gracias explained. “We plan to create biodegradable, vascularized tissue scaffolds using this approach.”

Link to the journal article here.

Story by Mary Spiro

 

 

Panel discussion tackles the question: Is undergraduate research for you?

Undergraduates presenting at summer research symposium.

Are you an undergraduate  engineering student who wants to do research but just doesn’t know where to start?

The Johns Hopkins chapter of the Society of Women Engineers  will host a panel discussion Thursday, October 27 at 7 PM in room 132 of Gilman Hall  on the Homewood campus.  The panel discussion is designed to answer your questions about getting started in research at Johns Hopkins University.   Listen to a panel of undergraduate research students in engineering discuss what it’s like to work in an engineering lab.

Undergraduate research experience is extremely important if you want to apply for internships, jobs, scholarships and postgraduate work. Conducting research while you’re an undergraduate also helps put this ideas that you’ve learned in class into action for larger goal. Some undergraduate researchers  even have their work published in peer-reviewed journals.

Johns Hopkins Institute for NanoBiotechnology offers a summer research experience for undergraduates in nano bio.   A criteria for applying to an REU  program is that you have had prior research experience.  Don’t miss your opportunity to learn about this exciting component of your undergraduate academic career.

For more information about the Society of Women Engineers go to http://www.jhu.edu/swe/index.html

For details about  about Johns Hopkins Institute for Nano Biotechnology summer Research Experience for Undergraduates program, go to http://inbt.jhu.edu/education/undergraduate/reu/

Applications for the 2012 summer program will be accepted soon.

Hopkins faculty to present at American Society for NanoMedicine meeting

© Liudmila Gridina | Dreamstime.com

The American Society for NanoMedicine (ASNM) will hold its third annual meeting November 9 -11 at the Universities at Shady Grove Conference Center in Gaithersburg, Md. This year ASNM has worked closely with the Cancer Imaging Program, National Cancer Institute, and National Institutes of Health to create a conference with a special focus on nano-enabeled cancer diagnostics and therapies, and the synergy of the combination of nano-improved imaging modalities and targeted delivery.

The program also focuses on updates on the newest Food and Drug Administration, nanotoxicity, nanoparticle characterization, nanoinformatics, nano-ontology, results of the latest translational research and clinical trials in nanomedicine, and funding initiatives. This year’s keynote speaker is Roger Tsien, 2008 Nobel Prize Laureate. Numerous other speakers and breakout sessions are planned for the three day event. Two speakers affiliated with Johns Hopkins include Justin Hanes and Dmitri Artemov. Hanes is a professor of nanomedicine in the department of ophthalmology at the Johns Hopkins School of Medicine. Artemov is an associate professor of radiology/magnetic resonance imaging research, also at the School of Medicine.

The deadline for the poster abstracts is October 1. The top four posters submitted by young (pre and post doctoral) investigators will be selected to give a short 10-minute (eight slides) oral presentation on November 11.

ASNM describes itself as a “a non-profit, open, democratic and transparent professional society…focus(ing) on cutting-edge research in nanomedicine and moving towards realizing the potential of nanomedicine for diagnosis, treatment, and prevention of disease.” More information about the ASNM can be found on the Society’s official website.

 

 

Agenda set for Oct. 10 mini-symposium on cancer, nanotech

From the spring mini-symposium.

Johns Hopkins Physical Sciences-Oncology Center and Center of Cancer Nanotechnology Excellence will host a mini-symposium on Monday Oct., 10 in the Hackerman Hall Auditorium. Talks on topics related to cancer and nanotechnology begin at 9 a.m.

Speakers include:

  • 9:15 a.m.: The pulsating motion of breast cancer cell is regulated by surrounding epithelial cells. Speaker: Meng Horng Lee
  • 9:40 a.m.: Breast tumor extracellular matrix promotes vasculogenesis. Speaker: Abigail Hielscher
  • 10:00 a.m.: Attachment to growth substrate regulates expression of GDF15, an important molecule in metastatic cancer. Speaker: Koh Meng Aw Yong
  • 10:20 a.m.: Mucin 16 is a functional selectin ligand on pancreatic cancer cells. Speaker: Jack Chen
  • 10:40 a.m.: Particle tracking in vivo. Speaker: Pei-Hsun Wu

These talks are open to the entire Hopkins community. No RSVP is required. Refreshments will be served.