Affiliates receive state stem cell research awards

Several researchers associated with Johns Hopkins Institute for NanoBioTechnology have received grants from the Maryland Stem Cell fund.

In the Whiting School of Engineering, awardees include Sharon Gerecht, Kent Gordon Croft Investment Management Faculty Scholar in the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering and associate director of the Institute for NanoBioTechnology, and Warren Grayson, associate professor in the Department of Biomedical Engineering. Both received MSCRF Investigator Initiated Grants. Gerecht’s stem cell project targets diabetic wound treatment, and Grayson’s targets volumetric muscle loss.

2000px-Stem_cell_treatments.svgIn addition, Dhruv Vig, a post-doctoral student in INBT and the Department of Mechanical Engineering, received one of the organization’s Post-Doctoral Fellowship Grants for his project “Geometric Cues in the Establishment and Maintenance of Heterogeneous Stem Cell Colonies.”

According to Vig, the goal of this investigation is to introduce a new way of characterizing the potency and/or differentiation of human pluripotent stem cells.

“Our work uses an innovative blend of mathematical modeling and experimental approaches to shed light on the role of physical forces and geometric constraint involved in the establishment and maintenance of proper stem cell functions,” explains Vig, who is advised by Gerecht and Sean Sun, professor and vice-chair in the Department of Mechanical Engineering.

Other INBT affiliated faculty members who received the grants include Guo-li Ming, M.D., Ph.D., targeting schizophrenia and autism and Michael McMahon, Ph.D., targeting intervertebral disc degeneration, both from the Johns Hopkins School of Medicine.

Of the 26 MSCRP grants, 21 went to Hopkins-affiliated researchers. The purpose of these grants and fellowships is to promote state-funded stem cell research.

 

 

 

Two INBT affiliates among 2016 Siebel Scholars

Two of the five Johns Hopkins graduate students who were recently named to the 2016 class of Siebel Scholars are affiliated with Johns Hopkins Institute for NanoBioTechnology. Congratulations to Sebastian F. Barreto Ortiz, who is completing his PhD in Chemical and Biomolecular Engineering in the lab of Sharon Gerecht, and to Dong Jin Shin, who is completing his PhD in biomedical engineering in the laboratory of Jeff Tza-Huei Wang in the Department of Mechanical Engineering.

Dong Jin Shin (l) and Sebastian Barreto-Ortiz are among the 2016 Siebel Scholars.

Dong Jin Shin (l) and Sebastian Barreto-Ortiz are among the 2016 Siebel Scholars.

Barreto-Ortiz, who was part of INBT’s Center for Cancer Nanotechnology Excellence training grant, is developing human blood vessels to replace damaged or diseased vessels in patients. Barreto engineered the first self-standing mid-sized vascular construct (less than 1 millimeter in diameter), which could eventually connect tiny capillaries with much larger lab-grown vessels.

Shin is a fellow in INBT’s Cancer Nanotechnology Training Center. His research focuses on droplet magnetofluidics and biomedical instrumentation with the aim to build small, low-cost lab-on-a-chip devices that can perform diagnostic tests at a point-of-care that produce results in an hour or less. He recently unveiled a prototype that can detect the sexually transmitted disease chlamydia within 30 minutes. (Read more about this technology in an article in The Baltimore Sun here.) The technology could eventually be used to detect cancer biomarkers as well as infectious diseases such as strep throat and the flu.

The merit-based Siebel program recognizes research skills, academic achievements and leadership qualities and provides $35,000 for use in the students’ final year of graduate studies. Read about all the Siebel scholars here.

All press inquiries about INBT should be directed to Mary Spiro, INBT’s science writer and media relations director at mspiroATjhu.edu.

Gerecht to present Frontier Award Lecture Dec. 1

Sharon Gerecht, Kent Gordon Croft Investment Management Faculty Scholar and associate professor in the Department of Chemical and Biomolecular Engineering, will present the Inaugural President’s Frontier Award Lecture at 11 a.m. on Tuesday, Dec. 1 in Mason Hall Auditorium. A reception will follow.

Sharon Gerecht

Sharon Gerecht

Gerecht is a bioengineer whose research focuses on using engineering fundamentals to study basic questions in stem cell biology in order to regenerate and repair damaged blood vessels and halt the spread of cancer.

In January, Gerecht became the first winner of the $250,000 President’s Frontier Award. She will become an associate director of the Institute for Nanobiotechnology in January.

Gerecht and Mao to join INBT leadership effective January 1

The Johns Hopkins Institute for NanoBioTechnology (INBT) recently announced that Sharon Gerecht and Hai-Quan Mao have been appointed as associate directors, effective January 1, 2016.

“The addition of Gerecht and Mao to the Institute’s leadership team will be crucial in developing new research areas,” says director Peter C. Searson, the Joseph R. and Lynn C. Reynolds Professor in Materials Science and Engineering at the Whiting School.

mao-gerecht

Hai-Quan Mao and Sharon Gerecht join INBT as associate directors in 2016

Associate director Denis Wirtz, Vice Provost for Research and the Theophilus H. Smoot Professor of Chemical and Biomolecular Engineering adds, “Their broad research interests and forward-thinking vision will contribute to shaping the institute’s future.”

Both Gerecht and Mao are engaged in collaborative projects with investigators in Johns Hopkins University’s School of Medicine, Bloomberg School of Public Health, and Krieger School of Arts and Sciences, and the university’s Applied Physics Laboratory.

Gerecht, the Kent Gordon Croft Investment Management Faculty Scholar and an associate professor of chemical and biomolecular engineering, has been a member of the INBT since arriving at Johns Hopkins in 2007. Gerecht’s research interests include stem cell differentiation, biomaterials development and tissue engineering approaches for regenerative medicine and cancer. In 2015, Gerecht received the inaugural President’s Frontier Award from Johns Hopkins University, in recognition of her scholarly achievements and exceptional promise.

Mao, a professor of materials science and engineering, has been active in INBT since its inception in 2006.  Mao holds joint appointments in the Translational Tissue Engineering Center in the School of Medicine and the Whitaker Biomedical Engineering Institute. His research focuses on creating nanofiber matrix platforms to direct stem cell expansion and differentiation, nanomaterials to modulate the immunoenvironment and promote neural regeneration, and developing nanoparticle systems to deliver plasmid DNA, siRNA, vaccines and other therapeutic agents.

“INBT has been instrumental in advancing science and engineering in critically important areas of research,” says Ed Schlesinger, the Benjamin T. Rome Dean of the Whiting School of Engineering. “An additional manifestation of the INBT’s success and growth is the astonishingly talented faculty who are part of the institute and who are willing and able to take on leadership roles. I have no doubt that in their new roles Sharon and Hai-Quan will help advance the INBT’s mission and its stellar reputation.”

INBT was launched in 2006 with support from Senator Barbara Mikulski to promote multidisciplinary research at the interface of nanotechnology and medicine.  The institute, with more than 250 affiliated faculty members from the Johns Hopkins University’s School of Medicine, Whiting School of Engineering, Krieger School of Arts and Sciences, School of Education, Bloomberg School of Public Heath, and the Applied Physics Laboratory, is home to several center grants and numerous education, training, and outreach programs.

All press inquiries about this program or about INBT in general should be directed to Mary Spiro, INBT’s science writer and media relations director at mspiroATjhu.edu.

REU Profile: Hydrogels and stem cells

FranklynHall

Franklyn Hall

Franklyn Hall is a rising junior at Mississippi State University where he is studying Chemical Engineering with a Biomolecular Concentration. He is spending the summer in the chemical and biomolecular engineering laboratory of Sharon Gerecht as part of the Johns Hopkins Institute for NanoBioTechnology Research Experience for Undergraduates program (INBT REU).

Franklyn wanted to write about his experience thus far at Johns Hopkins in the INBT REU program in a blog post as follows:

This summer at the INBT REU has been an amazing experience that has allowed me to investigate interesting research topics such as hydrogels and stem cell growth. This experience has also given me the opportunity to learn more about the JHU community and the life of a graduate student.

My research is mainly focused on the characterization of the optimal conditions for vascular regeneration and growth within hydrogels. Hydrogels are unique 3-D environments that mimic in-vivo cell growth and allow researchers to study and adjust growth conditions, patterns, and cell interactions. These 3-D growth environments not only improve our understanding of stem cells, but they have applications in wound healing and tissue regeneration. I am specifically investigating hypoxia in hydrogels or the state of having low oxygen availability within the hydrogel. One of my research goals is to find the optimal hypoxic conditions and the effect of oxygen gradients within the hydrogel on cell growth and development. I have enjoyed learning how to make the hydrogel polymers, culture and stain cells, and look forward to producing results soon.

Outside of the laboratory I have had the opportunity to play on the departmental softball team with my graduate student mentor. It is common for graduate students to play different sports in the evening to socialize and have fun outside of the laboratory. During our semiweekly games, I have been able to talk to Masters, MD, and MD/PhD. students to learn about their graduate study experiences and future goals.  We have also had the opportunity to go out to eat and go to different events around Baltimore.

Graduate studies and research may be challenging. However, with people like the ones I have met, the support is there for you to persevere and make your mark on the scientific community.

All press inquiries about this program or about INBT in general should be directed to Mary Spiro, INBT’s science writer and media relations director at mspiroATjhu.edu.

 

Gerecht nets American Heart Association grant

Sharon Gerecht, associate professor in the Department of Chemical and Biomolecular Engineering and affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology, has received the prestigious American Heart Association Established Investigator Award.

sharongerecht_cropThe AHA awarded only four such grants this year, funding designed to support mid-career of investigators who show unusual promise and accomplishments in the study of “cardiovascular or cerebrovascular science.”

Gerecht’s research focuses on engineering platforms, specifically hydrogels, that are designed to coax stem cells to develop into the building blocks of blood vessels. The hope is that these approaches could be used to help repair circulatory systems that have been damaged by heart disease, diabetes, and other illnesses.

Additionally, Gerecht leads a research project in the Johns Hopkins Physical Science-Oncology Center where she is studying the effects of low oxygen (hypoxia) on the tumor growth and blood vessel formation. The AHA funding will support her work on regulating hypoxia in hydrogels for vascular regeneration. The award is worth approximately $400,000 over five years.

Learn more about the Gerecht lab here.

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

“Cells Performing Secret Handshake” wins grand prize

Sebastian F. Barreto, a doctoral student of chemical and biomolecular engineering in the laboratory of Sharon Gerecht, won the grand prize for his image “Cells Performing Secret Handshake” from the Regenerative Medicine Foundation. Another image that Barreto submitted received 3rd place (shown below), and a third image received honorable mention.

Late last year, RMF issued an international call for macro-photography of regenerative medicine images taken through a microscope. This inaugural contest resulted in nearly 100 images representing scientists from the United States, Australia, Canada, Germany, the Netherlands and the United Kingdom.

Cells-Performing-Secret-Handshakes

This image by Sebastian Barreto of Human Umbilical Vein Endothelial Cells “performing a secret handshake” won the grand prize in the first photo contest of the Regenerative Medicine Foundation.

Barreto’s image was included in the “Art of Science: Under the Surface” exhibition that featured an opening lecture and public reception with global expert in regenerative medicine Anthony Atala, M.D. and award winning photographer, painter and sculpture, Kelly Milukas, whose talk focused on the impact of art on healing. The winning images will also be featured in a special public patron gallery exhibition component during the Regenerative Medicine Foundation annual meeting held in San Francisco, May 5-7, 2014.

In a congratulatory letter, Joan F. Schanck, the Academic Research Program Officer, Wake Forest Institute for Regenerative Medicine and Director of Education for the Regenerative Medicine Foundation, said, “This competition will assist in developing a digital library that can be used to excite, inform and educate a broad audience.”

Barreto is affiliated with both the Johns Hopkins Institute for NanoBioTechnology and with the Physical Sciences-Oncology Center.

Captions for both photos can be found below:

Technical description for the grand prize photo: Epifluorescence image was taken at 1280 x 1024 using an Olympus BX60 microscope. Human Umbilical Vein Endothelial Cells (HUVECs) were cultured for five days and stained for F-actin (green), Vascular Endothelial cadherin (VEcad; red), and nuclei was counter-stained with DAPI (blue).

 

Endothelial-Cells-Resisting-Smooth-Muscle-Cell-Pull

Barreto’s image of endothelial cells won 3rd place in the RMF photo contest.

 

Technical description for 3rd place photo: Epifluorescence image was taken at 1280 x 1024 using an Olympus BX60 microscope. Human Endothelial Colony Forming Cells (ECFCs) were cultured for eight days before being co-cultured with human Smooth Muscle Cells (SMCs) for four more days. ECFCs were stained with CD31 (red), SMCs with SM22 (green), and nuclei was counterstained with DAPI (blue).

 

 

 

Gerecht research featured in Baltimore Sun science section

Science journalism is coming back to The Baltimore Sun, or so it would seem. Evidence of this comes in the form of this well written article by Arthur Hirsch about work in the laboratory of Sharon Gerecht, associate professor of Chemical and Biomolecular Engineering and an affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology.

Photo  from The Baltimore Sun.

Photo from The Baltimore Sun.

The Gerecht lab is working on ways to coax stem cells into becoming tiny micro blood vessels, the kind crucial to feeding nutrients to new or transplanted tissue. Without these smallest branches of blood vessel, tissue cannot thrive.

Hirsch does an excellent job at not only deftly reporting Gerecht’s findings but beautifully describing what the vessels look like and the overall significance of the work. But this is not a critique of Hirsch’s writing. I am unqualified to do that. What this IS, is a tip of the hat to The Baltimore Sun for a) actually having a science story that was about the work of local scientists and b) assigning an extremely competent writer to produce the work.

I say this, because for the last 10 years or so, there seems to have been a steady decline in science reporting in by local media. The decline was in the quantity as well as in the quality. The New York Times still had their Tuesday Science Times, and a few other major dailies have managed to keep their science sections alive. But overall, there was a sharp and rapid decline in science journalist positions at smaller newspapers. Entire departments were disassembled. Bureaus shut down. Science stories, if they were written, were about “news you could use” and were relegated to newbie writers, many of who had little or no scientific understanding. Many former science reporters moved into the blogosphere or took up public relations jobs, like I did.

But the Gerecht story was about basic science, not about some new gadget that could fix this or that right now. It was about the scientific process and “eureka” moments. It gave insight into how scientists work, and even more importantly, how LONG it takes to arrive at a significant finding. (In this case, it has taken Gerecht 10 years to arrive at these findings.)

Maybe there is hope for the future of science journalism at the local level yet.

Check out The Sun story here:

Lab-grown blood vessels made with less ado

Mary Spiro is the science writer and blog maven for Johns Hopkins Institute for NanoBioTechnology. All comments can be sent to mspiro@jhu.edu.

Pluripotent stem cells hold key to blood vessel formation

Pluripotent stem cells, those cells capable of transforming into any type of tissue in the human body, hold the key to one of science’s biggest challenges: the formation of new blood vessels.

Researchers in the laboratory of Sharon Gerecht, associate professor of chemical and biomolecular engineering in the Whiting School of Engineering at Johns Hopkins University, have demonstrated a method that causes these powerful cells to form a fresh network of blood vessels when transplanted in mice. Shawna Williams, writer at the Johns Hopkins School of Medicine, reports here on this new research, which was published online this week in the Proceedings of the National Academy of Sciences. You can find the article here.

Shown are lab-grown human blood vessel networks (red) incorporating into and around mouse networks (green). (Gerecht Lab/PNAS)

Shown are lab-grown human blood vessel networks (red) incorporating into and around mouse networks (green). (Gerecht Lab/PNAS)

Here’s a comment from Gerecht, who is affiliated with both Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology:

“In demonstrating the ability to rebuild a microvascular bed in a clinically relevant manner, we have made an important step toward the construction of blood vessels for therapeutic use … Our findings could yield more effective treatments for patients afflicted with burns, diabetic complications and other conditions in which vasculature function is compromised.”

The Gerecht lab, in collaboration with researchers at the School of Medicine, has been working on this puzzle for some time. One important stride in this current work is that the vessels are forming and persisting in a living animal and not just in a culture in a flask.

Says lead author and doctoral student in biomedical engineering, Sravanti Kusuma:

“That these vessels survive and function inside a living animal is a crucial step in getting them to medical application.”

You can read about some of the Gerecht lab’s previous findings in this particular pursuit in the articles listed below:

Engineers Coax Stem Cells to Diversify 

Research Seeks to Turn Stem Cells into Blood Vessels

 

Burn healing gel could soon be commercialized for veterinary use

Hope for severe burns could lie in the healing action encouraged by a colorless, odorless “hydrogel” developed by Johns Hopkins Institute for NanoBiotechnology affiliated researchers. The Johns Hopkins Engineering Magazine summer edition featured a story here on this work, occurring in the laboratory of chemical and biomolecular engineering associate professor, Sharon Gerecht.

Screen Shot 2013-07-01 at 2.20.27 PMNews of the original research was posted here on the INBT blog in December 2011. However, the pain and suffering experienced by third-degree burn sufferers is long-lasting and this work rightly deserves to be re-visited. The original study, done in conjunction with faculty in the Department of Pathology at the Johns Hopkins School of Medicine and the Johns Hopkins Burn Center at Bayview Medical Center, demonstrated for the first time a treatment that could not only aid in healing but practically restore the skin in the tested animals to a healthy state. Use of the hydrogel was tested on mice, and after just a few weeks, skin had regrown to a nearly scar-free state that could even regrow hair. The team is now looking a testing the gel with pigs.

The funny thing is, is that Gerecht and company are not even sure why the hydrogel works the way it does.

The Whiting School of Engineering magazine article highlights the potential commercialization timeline for the hydrogel, that is, when will a product based on this new technology be available for humans? That is a question that folks here at INBT and those affiliated with this work have been receiving nearly once a week since this research was first published. Now, maybe we will have an answer for all those who could potentially benefit from this important and yet mysterious discovery.