Nanotechnology for gene therapy

Editor’s Note: The following is a summary of one of the talks from the 2013 Nano-bio Symposium hosted by Johns Hopkins Institute for NanoBioTechnology held May 17. This summary was written by Randall Meyer, a doctoral candidate in the biomedical engineering and a member of the Cancer Nanotechnology Training Center. Look for other symposium summaries on the INBT blog.

One of the key features of nanotechnology is its wide range of applicability across multiple biological scenarios ranging from gene therapy to immune system modulation. Jordan Green, an assistant professor of Biomedical Engineering at Johns Hopkins University, summarized some of the fascinating applications of nanotechnology on which his laboratory has been working. Green is an INBT affiliated faculty member.

One of the Green lab projects involves the design and implementation of nanoparticle based vectors for delivery of genetic material to the cell. Green demonstrated how these particles could be used to deliver DNA and induce expression of a desired gene, or small interfering RNA (siRNA) to silence the expression of a target gene. These genetic therapeutics are being developed to target a wide variety of retinal diseases and cancers.

Jordan Green (Photo by Marty Katz)

Jordan Green (Photo by Marty Katz)

 

As opposed to viral based vectors for gene therapy, nonviral vectors such as nanoparticles are safer, more flexible in their range of cellular targets, and can carry larger cargoes than viruses, Green explained.

 

Another project in the Green lab involves the development of micro and nano dimensional artificial antigen presenting cells (aAPCs) for cancer immunotherapy. These aAPCs mimic the natural signals that killer T-cells receive when there is an invader (bacteria, virus, cancer cell, etc.) in the body. The Green lab is currently working with these particles to stimulate the immune system to fight melanoma.

 

Green Group