The Rosetta REU: software lets students collaborate at a distance

Johns Hopkins Institute for NanoBioTechnology (INBT) has launched a summer research undergraduate internship to train students to build new lifesaving drug molecules and create new biofuels, while testing the concept of a virtual research community. With the help of a $200,000, two-year grant to INBT from the National Science Foundation, Jeffrey Gray, professor of chemical and biomolecular engineering, spearheaded a first-of-its-kind training program where students collaborate with others from distant host university labs and use computer software to build vaccines, biofuels, and protein circuits in living cells.

Typical summer internships bring students together to one host university, but students in the Computational Biomolecular training program use an open-source software called Rosetta to work together on problems no matter where they are. Participants are mentored by members of a global collaborative team known as the Rossetta Commons, and users analyze massive amounts of data to predict the structure of real and imagined proteins, enzymes, and other molecules.

ChemBE professor Jeff Gray (standing) confers with Rosetta Commons undergradutate intern, Morgan Nance (seated left), and her mentor, Rebecca Alford (seated right), undergraduate research assistant, as they video conference with Mingzhao Liu, an undergraduate interning at Vanderbilt University.

ChemBE professor Jeff Gray (standing) confers with Rosetta Commons undergraduate intern, Morgan Nance (seated left), and her mentor, Rebecca Alford (seated right), undergraduate research assistant, as they video conference with Mingzhao Liu, an undergraduate interning at Vanderbilt University. Photo by Will Kirk/Homewood Photography

“Computational biologists study known macromolecules or design new ones and use computers to predict how these molecules will fold in 3D and interact with cells or other molecules,” said Gray. “For example, researchers create computational algorithms to design a new drug molecule or use the Rosetta software to predict how molecules might behave in a living organism. And because the work is done using a computer, researchers can easily collaborate at a distance.”

The students in the pilot program began with a week-long boot camp at the University of North Carolina at the end of May. Then, they traveled to host universities, which included Johns Hopkins; University of California, Davis; Scripps Research Institute; Stanford University; New York University; Rensselaer Polytechnic Institute; and Vanderbilt.

Morgan Nance, a biochemistry and molecular biology major from the University of California, Davis, worked in the Gray Lab. “I hope to become more familiar with Rosetta to the point that I am able to utilize it in my home lab,” Nance said. “I want to gain the technical skills of how to use this new software and the knowledge of how to develop it further. “

With the pilot program, students quickly expand their skill set. “Each lab has different expertise,” Gray said. “One lab might specialize in protein docking, another in RNA structure and design, another in vaccine design or protein function. When students cross train in these laboratories, they learn to recognize the common themes. “

Each week, Nance and her colleagues “met” via video chat to discuss current published papers and to present updates from host labs. At the end of 10 weeks, the Rosetta cohort convened at the annual RosettaCON in Leavenworth, Washington. Though Nance was on her own at Hopkins, INBT staff included her in activities organized for their other summer research interns.

“If this distributed model works just as well as the traditional one, we would then be able to accept this kind of model and access the best labs in the country for doing research,” said Sally O’Connor, the NSF program director.

Story by Mary Spiro

All press inquiries about this program or about INBT in general should be directed to Mary Spiro, INBT’s science writer and media relations director at

Boarding the research bandwagon

The story of how I joined Johns Hopkins Institute for NanoBioTechnology (INBT) is actually one of those moments where it just hits you – Why haven’t I thought about doing this before? It started with me being back at home during the winter of my sophomore year, meeting friends of my parents and answering the most common question: Where do you study? One of the reactions that stuck with me the whole night was “Wow, how does it feel to be in the center of the most cutting-edge research?” This made me realize how I’d been oblivious to one of the things I would love to get involved in.

Better one and a half years late than never, I decided to join the research bandwagon as well. I started going through the profiles of labs on Homewood campus, looking for a topic that would make me want to be there in lab every free minute during the year. I finally found one that sparked my curiosity: the Denis Wirtz Lab. Dr. Wirtz is the Smoot Professor in the Department of Chemical and Biomolecular Engineering and also the University’s Vice Provost for Research.


Working in the lab!

Though at the time most of the stuff I read about the Wirtz lab went over my head, I knew that cancer was something I had always wanted the world to be rid of. Seeing near and dear ones succumb to it was one of the most excruciating things which I wanted no one to experience in the future. Fascinated by the approach taken by Dr. Wirtz, I shot him off an email and to my amazement, I got an email back within the hour, “Sent to my grad students, look forward to working with you. d”. The next day I was scheduled to be back in Baltimore, and the day after that, I was a part of Wirtz lab.

During my training, I remember asking one of my peers “How in the world can I remember all these procedures, let alone do them?” She simply smiled and said, “You’ll see”. In a few weeks, I found myself doing those very procedures, one step after another as if it were a reflex action. I would most definitely attribute me being able to do this to my grad student Hasini Jayatilaka (don’t kill me for calling you out!). At the end of the day, what I felt it boiled down to, was realizing that the person I work for was in the same shoes five-seven years ago as I was now, and she wouldn’t expect anything unrealistic out of me. Once you embrace the challenge ahead, knowing that there is no need to be intimidated, you’re good to go.

The best part of being involved in research, apart from the work you do, is sitting in class in a lecture hall and suddenly tune in to the professor talking about something that you do in lab each day. That moment cements your understanding of why you did what you’ve been doing for so many days, it connects the dots in your mind, and that moment is when you’ve completed the full circle between theory and practice.


Our team at a poster presentation over the summer.

For me personally, having to come to lab got me into a disciplined schedule. I had a fixed time for all days of the week now to wake up (which for me used to be the latest possible time before), since if I had no morning classes, I was in lab. It helped me a lot with my time management skills, with me cutting down on TV shows and sporadic naps. To my surprise, it did not affect the amount of time I spent with my friends, as the reduction in TV shows and naps was (extremely) disturbingly enough to keep every other aspect of my daily schedule the same. Being surrounded in lab by people in similar academic disciplines also gets me a ton of advice on classes. It’s like my own little “rate-my-professor” that encourages me to definitely take some class if it is “the best class I will take at Hopkins”. At times, it’s also a ‘learning den’ where I can get help with classes if I need to. Getting involved in a research lab also came with social outings with the team, with our dinners enabling us to get to know each other on a more personal level. I feel that this in a big way contributed to the chemistry we have while working with each other, made us comfortable spending time with each other at work.

At this point, after nine exciting months, including a fully lab-packed summer, I feel that this continues to be one of the best decisions I made so far. I do not regret being here every day, but take pride in saying “I need to be in lab”. One of the most cherished take-away for me is developing a sense of accountability for my actions, which I feel is an important aspect in life. I would definitely encourage being involved in research while at Hopkins as you have nothing to lose but so much to gain.

Pranay Tyle, is a junior in Chemical and Biomolecular Engineering minoring in Economics, and hopes to one day manufacture low cost medicine accessible to those in dire need across the globe.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, or 410-516-4802.

Coated nanoparticles move easily into brain tissue

Real-time imaging of nanoparticles green) coated with polyethylene-glycol (PEG), a hydrophilic, non-toxic polymer, penetrate within normal rodent brain. Without the PEG coating, negatively charged, hydrophobic particles (red) of a similar size do not penetrate. Image by Elizabeth Nance, Kurt Sailor, Graeme Woodworth.

Johns Hopkins researchers report they are one step closer to having a drug-delivery system flexible enough to overcome some key challenges posed by brain cancer and perhaps other maladies affecting that organ. In a report published online Aug. 29 in Science Translational Medicine, the Johns Hopkins team says its bioengineers have designed nanoparticles that can safely and predictably infiltrate deep into the brain when tested in rodent and human tissue.

“We are pleased to have found a way to prevent drug-embedded particles from sticking to their surroundings so that they can spread once they are in the brain,” said Justin Hanes, Lewis J. Ort Professor of Ophthalmology and project leader in the Johns Hopkins Center of Cancer Nanotechnology Excellence.

Standard protocols following the removal of brain tumors include chemotherapy directly applied to the surgical site to kill any cancer cells left behind. This method, however, is only partially effective because it is hard to administer a dose of chemotherapy high enough to sufficiently penetrate the tissue to be effective and low enough to be safe for the patient and healthy tissue. Furthermore, previous versions of drug-loaded nanoparticles typically adhere to the surgical site and do not penetrate into the tissue.

These newly engineered nanoparticles overcome this challenge. Elizabeth Nance, a graduate student in chemical and biomolecular engineering, and Johns Hopkins neurosurgeon Graeme Woodworth, suspected that drug penetration might be improved if drug-delivery nanoparticles interacted minimally with their surroundings. Nance achieved this by coating nano-scale beads with a dense layer of PEG or poly(ethylene glycol). The team then injected the coated beads, which had been marked with a fluorescent tag,  into slices of rodent and human brain tissue. They found that a dense coating of PEG allowed larger beads to penetrate the tissue, even those beads that were nearly twice the size previously thought to be the maximum possible for penetration within the brain. They then tested these beads in live rodent brains and found the same results.

Elizabeth Nance. Photo by Ming Yang.

The results were similar when biodegradable nanoparticles carrying the chemotherapy drug paclitaxel and coated with PEG were used. “It’s really exciting that we now have particles that can carry five times more drug, release it for three times as long and penetrate farther into the brain than before,” said Nance. “The next step is to see if we can slow tumor growth or recurrence in rodents.”

Woodworth added that the team “also wants to optimize the particles and pair them with drugs to treat other brain diseases, like multiple sclerosis, stroke, traumatic brain injury, Alzheimer’s and Parkinson’s.” Another goal for the team is to be able to administer their nanoparticles intravenously, which is research they have already begun.

Additional authors on the paper include Kurt Sailor, Ting-Yu Shih, Qingguo Xu, Ganesh Swaminathan, Dennis Xiang, and Charles Eberhart, all from The Johns Hopkins University.

Story adapted from an original press release by Cathy Kolf.


Additional news coverage of this research can be found at the following links:

Nanotechnology/Bio & Medicine

Death and Taxes Mag

New Scientist Health

Nanotech Web

Portugese news release (in Portugese)

German Public Radio (in German)

Device with tiny ‘speed bumps’ sorts cells

These illustrations show magnetically labeled circulating tumor cells (shown as yellow spheres), together with red, white and platelet cells, attempting to travel over an array of slanted ramps. The ramps act as speed bumps, slowing the tumor cells.. (Illustration by Martin Rietveld)

In life, we sort soiled laundry from clean; ripe fruit from rotten. Two Johns Hopkins engineers say they have found an easy way to use gravity or simple forces to similarly sort microscopic particles and bits of biological matter—including circulating tumor cells.

In the May 25 online issue of Physical Review LettersGerman Drazer, an assistant professor of chemical and biomolecular engineering, and his doctoral student, Jorge A. Bernate, reported that they have developed a lab-on-chip platform, also known as a microfluidic device, that can sort particles, cells or other tiny matter by physical means such as gravity. By moving a liquid over a series of micron-scale high diagonal ramps—similar to speed bumps on a road—the device causes microscopic material to separate into discrete categories, based on weight, size or other factors, the team reported.

As the tumor cells slow, the flow carries them along the length of the ramp, causing lateral displacement. After the tumor cells traverse an array of these ramps, they have sufficiently been displaced and can be continuously isolated from other cells in the sample. (Illustration by Martin Rietveld)

The process described in the journal article could be used to produce a medical diagnostic tool, the Whiting School of Engineering researchers say. “The ultimate goal is to develop a simple device that can be used in routine checkups by health care providers,” said doctoral student Bernate, who is lead author on the paper. “It could be used to detect the handful of circulating tumor cells that have managed to survive among billions of normal blood cells. This could save millions of lives.”

Ideally, these cancer cells in the bloodstream could be detected and targeted for treatment before they’ve had a chance to metastasize, or spread cancer elsewhere. Detection at early stages of cancer is critical for successful treatment.

How does this sorting process occur? Bernate explained that inside the microfluidic device, particles and cells that have been suspended in liquid flow along a “highway” that has speed-bump-like obstacles positioned diagonally, instead of perpendicular to, the path. The speed bumps differ in height, depending on the application.

“As different particles are driven over these diagonal speed bumps, heavier ones have a harder time getting over than the lighter ones,” the doctoral student said. When the particles cannot get over the ramp, they begin to change course and travel diagonally along the length of the obstacle. As the process continues, particles end up fanning out in different directions.

“After the particles cross this section of the ‘highway,’” Bernate said, “they end up in different ‘lanes’ and can take different ‘exits,’ which allows for their continuous separation.”

Gravity is not the only way to slow down and sort particles as they attempt to traverse the speed bumps. “Particles with an electrical charge or that are magnetic may also find it hard to go up over the obstacles in the presence of an electric or magnetic field,” Bernate said. For example, cancer cells could be “weighted down” with magnetic beads and then sorted in a device with a magnetic field.

The ability to sort and separate things at the micro- and nanoscale is important in many industries, ranging from solar power to bio-security. But Bernate said that a medical application is likely to be the most promising immediate use for the device.

He is slated to complete his doctoral studies this summer, but until then, Bernate will continue to collaborate with researchers in the lab of Konstantinos Konstantopoulos, professor and chair of the Department of Chemical and Biomolecular Engineering, and with colleagues at InterUniversity Microelectronics Center, IMEC, in Belgium. In 2011, Bernate spent 10 weeks at IMEC in a program hosted by Johns Hopkins’ Institute for NanoBioTechnology and funded by the National Science Foundation.

His doctoral adviser, Drazer, said, the research described in the new journal article eventually led Jorge down the path at IMEC to develop a device that can easily sort whole blood into its components. A provisional patent has been filed for this device.

The research by Bernate and Drazer was funded in part by the National Science Foundation and the National Institutes of Health.

Story by Mary Spiro.

Related links:



German Drazer’s Web page:

Department of Chemical and Biomolecular Engineering:

Students talk cancer nanotech at Homewood March 21

Students affiliated with the Center of Cancer Nanotechnology Excellence (CCNE) and the Physical Sciences-Oncology Center (PS-OC) at Johns Hopkins University have organized a spring mini-symposium for March 21, 10 a.m. in the Hackerman Hall Auditorium at the Johns Hopkins University Homewood campus.

The student-run mini-symposiums aim to bring together researchers from across the campus affiliated with the PS-OC and CCNE. Graduate students training in these centers, both administered by Johns Hopkins Institute for NanoBioTechnology, work in various disciplines from physics to engineering to the basic biological sciences but with an emphasis on understanding cancer metastasis and developing methods for cancer diagnosis or therapy.

The invited speaker for the symposium is postdoctoral researcher Megan Ho of Duke University. Ho earned her PhD in mechanical engineering in the Wang lab in 2008. She is currently focused on developing microfluidic devices to investigate and control the fundamental reactions that form nanocomplexes for gene delivery. (10 a.m.)

Student apeakers, who will talk for 15 minutes, include:

  • Jane Chisholm (Justin Hanes lab/Ophthalmology): Cisplatin nanocomplexes for the local treatment of small cell lung cancer (10:20 a.m.)
  • Yunke Song (Jeff Wang Lab/Mechanical Engineering): Single Quantum Dot-Based Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction (10:35 a.m.)
  • Andrew Wong (Peter Searson Lab/Materials Science and Engineering): Intravisation into an artificial blood vessel (10:50 a.m.)
  • Brian Keeley: (Jeff Wang Lab/Mechanical Engineering): Overcoming detection limitations of DNA methylation in plasma and serum of cancer patients through utilization of nanotechnology. (11:05 a.m.)
  • Sebastian Barretto (Sharon Gerecht Lab/Chemical and Biomolecular Engineering): Development of Hydrogel Microfibers to Study Angiogenesis (11:20 a.m.)

View the symposium flyer here. The mini-symposium is free and open to the entire Johns Hopkins University community. No RSVP is required, although seating is limited.

Johns Hopkins Physical Sciences-Oncology Center

Center of Cancer Nanotechnology Excellence

Hopkins to host colloid, surface science symposium

The Johns Hopkins University is hosting the 86th American Chemical Society’s Colloid and Surface Science Symposium in Baltimore, MD on June 10-13, 2012. The meeting includes 13 parallel sessions, a poster session, 28 invited speakers, and 28 session organizers. A new addition to this meeting is the Langmuir Student Awards presentation session with application details given on the conference website.

Abstract submission is now open and the deadline is February 7, 2012. Up-to-date information on the meeting can be found at the website:

For further details about this meeting please contact the symposium co-organizers Mike Bevan ( and Joelle Frechette ( Bevan and Frechette are affiliated faculty members of Johns Hopkins Institute for NanoBioTechnology and members of the Department of Chemical and Biomolecular Engineering.

Download the symposium flyer here.


Engineered hydrogel helps grow new, scar-free skin

In early testing, this hydrogel, developed by Johns Hopkins researchers, helped improve healing in third-degree burns. Photo by Will Kirk/

Johns Hopkins researchers have developed a jelly-like material and wound treatment method that, in early experiments on skin damaged by severe burns, appeared to regenerate healthy, scar-free tissue.

In the Dec. 12-16 online Early Edition of Proceedings of the National Academy of Sciences, the researchers reported their promising results from mouse tissue tests. The new treatment has not yet been tested on human patients. But the researchers say the procedure, which promotes the formation of new blood vessels and skin, including hair follicles, could lead to greatly improved healing for injured soldiers, home fire victims and other people with third-degree burns.

The treatment involved a simple wound dressing that included a specially designed hydrogel—a water-based, three-dimensional framework of polymers. This material was developed by researchers at Johns Hopkins’ Whiting School of Engineering, working with clinicians at the Johns Hopkins Bayview Medical Center Burn Center and the Department of Pathology at the university’s School of Medicine.

Third-degree burns typically destroy the top layers of skin down to the muscle. They require complex medical care and leave behind ugly scarring. But in the journal article, the Johns Hopkins team reported that their hydrogel method yielded better results. “This treatment promoted the development of new blood vessels and the regeneration of complex layers of skin, including hair follicles and the glands that produce skin oil,” said Sharon Gerecht, an assistant professor of chemical and biomolecular engineering who was principal investigator on the study.

Guoming Sun, left, a postdoctoral fellow, and Sharon Gerecht, an assistant professor of chemical and biomolecular engineering, helped develop a hydrogel that improved burn healing in early experiments. Photo by Will Kirk/

Gerecht said the hydrogel could form the basis of an inexpensive burn wound treatment that works better than currently available clinical therapies, adding that it would be easy to manufacture on a large scale. Gerecht suggested that because the hydrogel contains no drugs or biological components to make it work, the Food and Drug Administration would most likely classify it as a device. Further animal testing is planned before trials on human patients begin. But Gerecht said, “It could be approved for clinical use after just a few years of testing.”

John Harmon, a professor of surgery at the Johns Hopkins School of Medicine and director of surgical research at Bayview, described the mouse study results as “absolutely remarkable. We got complete skin regeneration, which never happens in typical burn wound treatment.”

If the treatment succeeds in human patients, it could address a serious form of injury. Harmon, a coauthor of the PNAS journal article, pointed out that 100,000 third-degree burns are treated in U. S. burn centers like Bayview every year. A burn wound dressing using the new hydrogel could have enormous potential for use in applications beyond common burns, including treatment of diabetic patients with foot ulcers, Harmon said.

Guoming Sun, Gerecht’s Maryland Stem Cell Research Postdoctoral Fellow and lead author on the paper, has been working with these hydrogels for the last three years, developing ways to improve the growth of blood vessels, a process called angiogenesis. “Our goal was to induce the growth of functional new blood vessels within the hydrogel to treat wounds and ischemic disease, which reduces blood flow to organs like the heart,” Sun said. “These tests on burn injuries just proved its potential.”

Gerecht says the hydrogel is constructed in such a way that it allows tissue regeneration and blood vessel formation to occur very quickly. “Inflammatory cells are able to easily penetrate and degrade the hydrogel, enabling blood vessels to fill in and support wound healing and the growth of new tissue,” she said. For burns, the faster this process occurs, Gerecht added, the less there is a chance for scarring.

Originally, her team intended to load the gel with stem cells and infuse it with growth factors to trigger and direct the tissue development. Instead, they tested the gel alone. “We were surprised to see such complete regeneration in the absence of any added biological signals,” Gerecht said.

Sun added, “Complete skin regeneration is desired for various wound injuries. With further fine-tuning of these kinds of biomaterial frameworks, we may restore normal skin structures for other injuries such as skin ulcers.”

Gerecht and Harmon say they don’t fully understand how the hydrogel dressing is working. After it is applied, the tissue progresses through the various stages of wound repair, Gerecht said. After 21 days, the gel has been harmlessly absorbed, and the tissue continues to return to the appearance of normal skin.

The hydrogel is mainly made of water with dissolved dextran—a polysaccharide (sugar molecule chains). “It also could be that the physical structure of the hydrogel guides the repair,” Gerecht said. Harmon speculates that the hydrogel may recruit circulating bone marrow stem cells in the bloodstream. Stem cells are special cells that can grow into practically any sort of tissue if provided with the right chemical cue. “It’s possible the gel is somehow signaling the stem cells to become new skin and blood vessels,” Harmon said.

Additional co-authors of the study included Charles Steenbergen, a professor in the Department of Pathology; Karen Fox-Talbot, a senior research specialist from the Johns Hopkins School of Medicine; and physician researchers Xianjie Zhang, Raul Sebastian and Maura Reinblatt from the Department of Surgery and Hendrix Burn and Wound Lab. From the Whiting School’s Department of Chemical and Biomolecular Engineering, other co-authors were doctoral students Yu-I (Tom) Shen and Laura Dickinson, who is a Johns Hopkins Institute for NanoBioTechnology (INBT) National Science Foundation IGERT fellow. Gerecht is an affiliated faculty member of INBT.

The work was funded in part by the Maryland Stem Cell Research Fund Exploratory Grant and Postdoctoral Fellowship and the National Institutes of Health.

The Johns Hopkins Technology Transfer staff has filed a provisional patent application to protect the intellectual property involved in this project.

Related links:

Sharon Gerecht’s Lab

Johns Hopkins Burn Center

Johns Hopkins Institute for NanoBioTechnology


Story by Mary Spiro

Engineers put a new ‘twist’ on lab-on-a-chip

Close-up of a cylindrically-shaped microfluidic device with two fluorescent solutions flowing through. Reproduced with permission from Nature Communications.

A leaf works something like a miniature laboratory. While the pores on the leaf surface allow it to channel nutrients in and waste products away from a plant, part of a leaf’s function also lies in its ability to curl and twist. Engineers use polymers to create their own mini-labs, devices called “labs-on-a-chip,” which have numerous applications in science, engineering and medicine. The typical flat, lab on a chip, or microfluidic device, resembles an etched microscopy cover slip with channels and grooves.

But what if you could get that flat lab-on-a-chip to self-assemble into a curve, mimicking the curl, twist or spiral of a leaf? Mustapha Jamal, a PhD student and IGERT fellow from Johns Hopkins Institute for NanoBioTechnology, has created a way to make that so.

Jamal is the lead author on “Differentially photo-crosslinked polymers enable self-assembling microfluidics,” published November 8, 2011 in Nature Communications. Along with principle investigator David Gracias, associate professor of Chemical and Biomolecular Engineering in the Whiting School of Engineering, and fellow graduate student Aasiyeh Zarafshar, Jamal has developed, for the first time, a method for creating three-dimensional lab-on-a-chip devices that can curl and twist.

The process involves shining ultraviolet (UV) light on a film of a substance called SU-8. Film areas closer to the light source become more heavily crosslinked than layers beneath, which on solvent conditioning creates a stress gradient.

Immersing the film in water causes the film to curl. Immersion in organic solvents like acetone causes the film to flatten. The curling and flattening can be reversed. The result, Jamal said, is the “self-assembly of intricate 3D devices that contain microfluidic channels.” This simple method, he added, can “program 2D polymeric (SU-8) films such that they spontaneously and reversibly curve into intricate 3D geometries including cylinders, cubes and corrugated sheets.”

Members of the Gracias lab have previously created curving and folding polymeric films consisting of two different materials. This new method achieves a stress gradient along the thickness of a single substance. “This provides considerable flexibility in the type and extent of curvature that can be created by varying the intensity and direction of exposure to UV light,” Gracias said.

Gracias explained that the method works with current protocols and materials for fabricating flat microfluidic devices. For example, one can design a 2D film with one type of lab-on-a-chip network, and then use their method to shape it into another geometry, also with microfluidic properties.

Fluorescent image of curved, self-assembled microfluidic device. Reproduced with permission from Nature Communications.

“Since our approach is compatible with planar lithography methods, we can also incorporate optical elements such as split ring resonators that have unique optical features. Alternatively, flexible electronic circuits could be incorporated and channels could be used to transport cooling fluids” Gracias said.

Tissue engineering is among the many important applications for 3D microfluidic devices, Gracias said. “Since many hydrogels can be photopolymerized, we can use the methodology of differential cross-linking to create stress gradients in these materials,” Gracias explained. “We plan to create biodegradable, vascularized tissue scaffolds using this approach.”

Link to the journal article here.

Story by Mary Spiro



Panel discussion tackles the question: Is undergraduate research for you?

Undergraduates presenting at summer research symposium.

Are you an undergraduate  engineering student who wants to do research but just doesn’t know where to start?

The Johns Hopkins chapter of the Society of Women Engineers  will host a panel discussion Thursday, October 27 at 7 PM in room 132 of Gilman Hall  on the Homewood campus.  The panel discussion is designed to answer your questions about getting started in research at Johns Hopkins University.   Listen to a panel of undergraduate research students in engineering discuss what it’s like to work in an engineering lab.

Undergraduate research experience is extremely important if you want to apply for internships, jobs, scholarships and postgraduate work. Conducting research while you’re an undergraduate also helps put this ideas that you’ve learned in class into action for larger goal. Some undergraduate researchers  even have their work published in peer-reviewed journals.

Johns Hopkins Institute for NanoBiotechnology offers a summer research experience for undergraduates in nano bio.   A criteria for applying to an REU  program is that you have had prior research experience.  Don’t miss your opportunity to learn about this exciting component of your undergraduate academic career.

For more information about the Society of Women Engineers go to

For details about  about Johns Hopkins Institute for Nano Biotechnology summer Research Experience for Undergraduates program, go to

Applications for the 2012 summer program will be accepted soon.

Gerecht wins NSF CAREER Award for work in blood vessel formation

Sharon Gerecht (Photo:Will Kirk/JHU)

Sharon Gerecht, assistant professor in Chemical and Biomolecular Engineering at Johns Hopkins University, has been awarded the Faculty Early Career Development (CAREER) Award from the National Science Foundation. The $450,000 prize over five years will help Gerecht in her investigation into how hypoxia, or decreased oxygen, affects the development of blood vessels.

Gerecht’s interdisciplinary research brings together her expertise in stem cell and vascular biology with her background in engineering.  Gerecht said she hopes to discover the mechanisms and pathways involved in the formation of vascular networks, as they relate to embryonic development and diseases such as cancer.

Many medical conditions, such as cancer and heart disease, create areas of decreased oxygen or hypoxia in the spaces between cells. But oxygen is required to maintain normal tissue function by blood vessel networks, which bring nutrients to cells. Likewise, the differentiation of stem cells into more complex organs and structures needs a plentiful supply of oxygen from the vasculature to function.

Gerecht’s study will examine how low oxygen levels impact the growth factors responsible for promoting vascular networks. She also will study the growth of vascular networks in engineered hydrogels that mimic the physical attributes of the extracellular matrix, which is the framework upon which cells divide and grow. Finally, her laboratory will focus on discovering how stem cells differentiate to blood vessel cells and assemble into networks under hypoxic conditions.

She will conduct her research through her role as a project director at the Johns Hopkins Engineering in Oncology Center (EOC), a Physical Science-Oncology Center of the National Cancer Institute. Gerecht is also an associated faculty member of the Johns Hopkins Institute for NanoBioTechnology, which administers the EOC.

Gerecht earned her doctoral degree from Technion – Israel Institute of Technology followed by postdoctoral training at Massachusetts Institute of Technology. She joined the faculty of the Whiting School of Engineering at Johns Hopkins in 2007.

The prestigious CAREER award, given to faculty members at the beginning of their academic careers, is one of NSF’s most competitive awards and emphasizes high-quality research and novel education initiatives. It provides funding so that young investigators have the opportunity to focus more intently on furthering their research careers.

Story by Mary Spiro