‘Shape-shifting’ protein could form basis for universal biohazard sensor

See full image. Ribbon diagram of the prediction of the protein switch structure. Purple indicates “receptor” part of the protein switch.Yellow represents the target molecule and also the region where the catalytic reaction takes place. Light blue marks the enzyme part of the switch that catalyzes the chemical reaction. Credit: Monica Berrondo/Gray Lab/JHU

Biosensors—devices that convert biological responses into readable signals— detect tiny amounts of single target molecules. Single molecule detection systems form the foundation of biosensors, like the ones used to recognize biohazards such as anthrax. A better biosensor, however, would be able to change to detect not one, but hundreds of different target molecules. [Read more...]

Lab-on-a-Chip Shows How Cells Break Free

Bridget Wildt, a Johns Hopkins materials science and engineering doctoral student, describes how the lab-on-a-chip device enables her to trigger the cell detachment process and capture it on camera. Credit: Martin Rietveld/Mary Spiro/JHU

Researchers from the Johns Hopkins Institute for NanoBioTechnology and the Department of Materials Science and Engineering have invented a method that could be used to help figure out how cancer cells break free from neighboring tissue, an “escape“ that can spread the disease to other parts of the body. The new lab-on-a-chip, described in the March issue of the journal Nature Methods, could lead to better cancer therapies. [Read more...]

INBT Welcomes Director of Corporate Partnerships

Picture of Tom Fekete
Tom Fekete, Director of Corporate Partnerships. Credit: Mary Spiro/JHU

The Johns Hopkins Institute for NanoBioTechnology (INBT) welcomes Thomas M. Fekete as its new Director of Corporate Partnerships. In this role, Fekete will act as a liaison between INBT faculty researchers and industry leaders. His aim will be to facilitate technology transfer from INBT affiliated labs to commercialization through industry. He also will work to coordinate student education and training opportunities through corporate partnerships.

Fekete comes to Johns Hopkins University with more than three decades of experience in the chemical and pharmaceutical industries, primarily in a senior management role. He last worked for KV Pharmaceuticals of St. Louis, Missouri, as Director of Operations Projects. Prior to that, he directed manufacturing sites for Astaris LLC of St. Louis and held executive level positions in research, engineering and manufacturing for the chemicals operations for FMC Corporation in Baltimore and Philadelphia.

The holder of four U.S. patents, Fekete, earned his Master’s in Chemical Engineering from Johns Hopkins University and his Bachelor’s in Chemical Engineering from Rensselaer Polytechnic Institute.

Fekete will be working part-time from his office located at 211 Maryland Hall on the Homewood campus of Johns Hopkins University. His office phone number is 410-516-8891 and email is tfekete1@jhu.edu.

Researcher Seeks to Turn Stem Cells into Blood Vessels

Stem cells possess the potential to become any type tissue. This quality makes them ideal tools for possible therapeutic applications to treat or even cure many kinds of human suffering. Sharon Gerecht, affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology (INBT) and assistant professor of chemical and biomolecular engineering, is using nanoengineered surfaces adorned with chemical cues, among other methods, to direct stem cells to differentiate into blood vessels. She also serves as a faculty mentor to students in INBT’s graduate training programs, postdoctoral program in Nanotechnology for Cancer Medicine, and the International Research Experience for Students. Read a recent faculty profile published by the Johns Hopkins Office of News and Information here: http://www.jhu.edu/news_info/news/home09/feb09/gerecht.html

A Finer Mesh

Ying-Ying Wang, a biomedical engineering doctoral student; and Samuel Lai, an assistant research professor of chemical and biomolecular engineering. Will Kirk/JHU

Johns Hopkins researchers affiliated with the Institute for NanoBioTechnology have discovered a way to chemically shrink the naturally occurring holes in the body’s protective mucus layer so that it will keep out more unwanted particles. Read more here. http://www.jhu.edu/news/home09/feb09/mesh.html

Johns Hopkins NanoBio Students Enlist in ‘Boot Camp’

Garrett Jenkinson(left) and Teaching Assistant Terrence Dobrowsky during the 2009 Nanobio Boot Camp. Credit: Mary Spiro / JHU

Graduate student fellows affiliated with Johns Hopkins Institute for NanoBioTechnology (INBT) training programs hail from diverse academic backgrounds. Some are electrical or biomedical engineers, others are chemists and biologists. But all of them at some point during their academic careers at Hopkins are required to take the core course NanoBio Laboratory (EN 500.621). To make sure that everyone taking the course is familiar with state-of-the-art laboratory techniques, INBT students enlist in a weeklong “boot camp.“ The 2009 boot camp occurred during the third week of January during intersession. [Read more...]

Offering a ‘Sweet’ Clue to Blood Borne Cancers

Simulation of Cell Rolling. Credit: Konstantopoulos Lab/JHU

Faculty Profile: Konstantinos Konstantopoulos

The surfaces of all cells, both normal ones and cancer causing, are coated with tiny sugar molecules that bind to compatible sites on blood vessel walls and allow the cell to travel around the body and into tissues. But what starts out as a friendly molecular “handshake“ for normal cells turns into a deadly embrace where tumor cells are involved. [Read more...]

Wireless Microgrippers Grab Living Cells in ‘Biopsy’ Tests

David Gracias, assistant professor of chemical and biomolecular engineering and affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology, lead a team of researchers that developed tiny microgrippers that can be controlled by harmless chemicals and magnets. This tiny tool, which closes around an object like a hand, could be used to conduct minimally invasive biopsies. Experiments using the device were reported in Proceedings of the National Academy of Sciences (Early Edition for the week of Jan. 12-16). Several news outlets, including the July 13, 2009 issue of The New York Times and ScienceDaily.com featured stories on the mircrogrippers, as well as videos that demonstrated how it works.

Here is a link to the story as it appeared on Headlines@Hopkins: http://www.jhu.edu/news_info/news/home09/jan09/gracias.html.

Partnership puts Hopkins nanobio innovations and students to work

Picture of John SchmidtJohn C. Schmidt. Credit: Northrop Grumman.

INBT Industrial Affiliate: Northrop Grumman

Launching the careers of its students and finding the best application for the innovations developed in its laboratories are two top priorities for John Hopkins Institute for NanoBioTechnology (INBT). Toward this end, INBT builds relationships with industry through its mutually beneficial Industrial Affiliates Program, which engages students in challenging research and provides a potential marketing pipeline for technologies created in INBT labs. The nation’s third largest defense contractor, Northrop Grumman, has been an INBT Industrial Affiliate since the Institute was founded in May 2006. [Read more...]

Gerecht Stem Cell Research Featured in Jewish Times

Sharon Gerecht (left) and students. Credit: JHU

The Baltimore Jewish Times recently featured a Q&A with Israeli native Sharon Gerecht, assistant professor of chemical and biomolecular engineering and affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology. Gerecht uses nanotopographic surfaces to direct the differentiation of stem cells. An excerpt from the article follows:

What’s the focus of your research?

My focus is stem cells and regenerative medicine. The ultimate goal is developing therapeutics for blood vessel disorders. Blood vessels circulate blood to and from the heart and lungs. Vascular disorders are common, especially as people age, and in chronic diseases such as diabetes.

Have you had success?

We’ve had success in inducing the differentiation of stem cells to blood vessels. Now we are trying to mature these cells to function as a tissue.

In the lab, we use mostly a Petri dish. The body is more three dimensional. Different concerns include transport of oxygen to a tissue, gradients of growth factors, and the specific milieu the cells are grown in.

We have developed several biomaterials that encourage three-dimensional blood vessel growth. Currently, we are studying how stem cells respond to different properties of these biomaterials…

The entire article, written by Barbara Pash, was published in the November 28, 2008 print edition of the Baltimore Jewish Times.

For more information on Sharon Gerecht’s research, visit her INBT affiliated faculty page at http://inbt.jhu.edu/facultyexpertise.php?id=personalresult&usr=220