Engineering in Oncology Center will probe forces that cause cancer to spread

Center director Denis Wirtz and associate director Greg Semenza

The Johns Hopkins Engineering in Oncology Center at INBT will be headed by Denis Wirtz, left. Gregg Semenza will serve as associate director. (Photo by Will Kirk/JHU)

Researchers from the Johns Hopkins Institute for NanoBioTechnology have been awarded a $14.8 million grant from the National Cancer Institute to launch a research center aimed at unraveling the physical underpinnings that drive the growth and spread of cancer. The new Johns Hopkins Engineering in Oncology Center at INBT includes 11 Johns Hopkins faculty members affiliated with the INBT and four investigators from partner universities. The project’s participants say that they hope this new line of research will lead to never-before-considered approaches to cancer therapy and diagnostics.

The Johns Hopkins center is one of 12 being launched by the National Cancer Institute to bring a new cadre of theoretical physicists, mathematicians, chemists and engineers to the study of cancer. During the five-year initiative, the NCI’s Physical Sciences-Oncology Centers will take new, nontraditional approaches to cancer research by studying the physical laws and principles of cancer; evolution and evolutionary theory of cancer; information coding, decoding, transfer and translation in cancer; and ways to deconvolute cancer’s complexity.

“By bringing a fresh set of eyes to the study of cancer, these new centers have great potential to advance, and sometimes challenge, accepted theories about cancer and its supportive microenvironment,” said NCI Director John E. Niederhuber. “Physical scientists think in terms of time, space, pressure, heat and evolution in ways that we hope will lead to new understandings of the multitude of forces that govern cancer, and with that understanding, we hope to develop new and innovative methods of arresting tumor growth and metastasis.”

The NCI, which is an agency of the National Institutes of Health, will allocate the Johns Hopkins-based Engineering in Oncology Center’s funding over five years. As the name of the center suggests, the researchers will look at how physical sciences play a role in the way cancer spreads, commonly called metastasis.

Wirtz, Semenza to direct EOC

Denis Wirtz, a professor of chemical and biomolecular engineering in the Whiting School of Engineering, will direct the center, and Gregg L. Semenza, a leading researcher at the School of Medicine, will serve as associate director.

“Metastasis is a highly coordinated, multistep process,” Wirtz said. “Cancer cells break free from a primary tumor, penetrate into the bloodstream, evade host defenses, stick to the interior walls of blood vessels and travel to other organs, where they set up new cancer cell colonies. During this cascade of events, tumor cells push on and are pushed by mechanical forces within their microenvironment. Cells translate those mechanical forces into biochemical signals that affect cell growth and function. If we can gain a better understanding of this process, we may find new and better ways to treat cancer.”

Wirtz, who is principal investigator, also serves as associate director of the university’s Institute for NanoBioTechnology, a cross-divisional institute launched in May 2006 with 185 Johns Hopkins faculty members who are using nanoscience to answer questions in medicine, the basic sciences and public health.

The new cancer center will similarly draw on Johns Hopkins researchers with diverse expertise to study the role of physical forces involved in the development and spread of cancer.

“Mechanical forces inside the body, such as shear exerted by blood flowing through blood vessels, typically destroy the millions of cancer cells that are constantly shed from tumors,” Wirtz said. “But the ‘fittest’ of cancer cells survive these Darwinian-like selective pressures and may become the culprits that spread cancer. Little is known about the effect of mechanical forces on the regulation of cancer cell growth. That is what the Engineering in Oncology Center and the National Cancer Institute want to find out. The results should point us to therapies and diagnostic tools that complement existing genetic or molecular treatments.”

In a congratulatory letter to Wirtz concerning the new center, Johns Hopkins President Ronald J. Daniels wrote, “This is a terrific achievement that highlights the value of interdisciplinary research and collaboration across the university, and the increasing importance this approach will have in the coming years. I am especially proud to see Johns Hopkins lead the way in this manner. … Not only will you be embarking into a new realm of scientific collaboration, you will be, at the same time, establishing Johns Hopkins as a leading center of excellence in this field. The ongoing fight against cancer demands new ideas, perspectives and approaches, and that is precisely what you are creating in [this] center.”

Semenza, the associate director, is affiliated with the School of Medicine’s departments of Pediatrics, Medicine, Oncology and Radiation Oncology, and the McKusick-Nathans Institute of Genetic Medicine. He is the C. Michael Armstrong Professor in Medicine and founding director of the Vascular Program at the school’s Institute for Cell Engineering. He also has ties to the School of Medicine’s Department of Biological Chemistry and to the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins.

Center will focus on three primary research aims

Semenza and Sharon Gerecht, an assistant professor of chemical and biomolecular engineering, will lead one of the center’s three key research projects related to how cancer spreads. They will focus on analyzing the makeup and physical properties of the extracellular matrix, the three-dimensional scaffold in which cells live.

“Normal cells live in a flexible scaffold, but cancer cells create a rigid scaffold that they climb through to invade normal tissue,” Semenza said. “We will study how this change occurs and how it is affected by the amount of oxygen to which cancer cells are exposed. Our studies have shown that cancer cells are deprived of oxygen, which incites them to more aggressively invade the surrounding normal tissues where oxygen is more plentiful. Hypoxia-inducible factor 1 controls the responses of cancer cells to low oxygen, and we have recently identified drugs that block the action of HIF-1 and inhibit tumor growth in experimental cancer models.”

The center’s second key research project teams Wirtz with Greg D. Longmore, a cancer cell biologist at Washington University in St. Louis. The two will study the physical basis for cancer cell adhesion and de-adhesion and how it increases the likelihood that cancer cells will break free, move into the bloodstream and migrate to other tissues. “Cancer cells are able to modulate proteins on the surface almost like a protein ‘brake’ that allows them to adhere or de-adhere in response to mechanical forces,” Wirtz said.

The center’s third primary research project will be led by Konstantinos Konstantopoulos, professor and chair of the Whiting School’s Department of Chemical and Biomolecular Engineering, and Martin L. Pomper, who holds appointments in the School of Medicine’s Department of Radiology and the Kimmel Cancer Center. These two researchers will investigate the effects of fluid mechanical forces at different oxygen tension microenvironments on tumor cell signaling, adhesion and migration.

“Fluid flow in and around tumor tissue modulates the mechanical microenvironment, including the forces acting on the cell surface and the tethering force on cell-substrate connections,” Konstantopoulos said. “Cells in the interior of a tumor mass experience a lower oxygen tension microenvironment and lower fluid velocities than those at the edges in proximity with a functional blood vessel, and are prompted to produce different biochemical signals. These differential responses affect tumor cell fate—that is, whether a cell will live or die, and whether it will be able to detach and migrate to secondary sites in the body.”

All three projects will combine experimental and computational/theoretical results to develop a better picture of how these mechanical forces influence cancer metastasis.

An educational component for graduates and postdoctoral fellows

In addition to the research component, the Engineering in Oncology Center will have a multidisciplinary training program for predoctoral students and postdoctoral fellows. The training program will be co-directed by Peter Searson, INBT’s director and the Joseph R. and Lynn C. Reynolds Professor in the Department of Materials Science and Engineering, and the School of Medicine’s Kenneth W. Kinzler, who is among the world’s most-cited cancer biologists and who serves as co-director of the Johns Hopkins Ludwig Center.

Other Johns Hopkins researchers affiliated with the Engineering in Oncology Center are Sean X. Sun, associate professor in the Department of Mechanical Engineering, and two faculty members from the Department of Biomedical Engineering: Kevin Yarema, associate professor, and Aleksander S. Popel, professor.

In addition to Longmore, the researchers from other institutions who will participate in the Johns Hopkins-based center are Timothy C. Elston, a theoretical and computational biophysicist at the University of North Carolina, Chapel Hill; Yiider Tseng, an experimental biophysicist and biochemist at the University of Florida; and Charles W. Wolgemuth, a theoretical and computational biophysicist at the University of Connecticut.

The center will incorporate two dedicated research facilities, also known as cores. The EOC Imaging Core will be established under the existing Integrated Imaging Center on the Homewood campus. J. Michael McCaffery, associate research professor of biology in the Krieger School of Arts and Sciences, will oversee the Imaging Core and facilitate imaging resources for EOC faculty. Searson will oversee the EOC Microfabrication Core, which will assist researchers in making the needed materials and devices for their experiments.

The Engineering in Oncology Center will be administered by the Institute for NanoBioTechnology, located on the Homewood campus, where research will occur in renovated laboratory facilities. Training and collaboration with investigators located at the four other research universities on the grant will occur through periodic onsite visits and via Web-based platforms.

Related Links:

National Cancer Institute’s Physical Sciences-Oncology Centers program

Johns Hopkins Engineering in Oncology Center at INBT

Johns Hopkins Institute for NanoBioTechnology

Johns Hopkins nanobio summer internship helps undergrads learn research ropes

Summertime flies by when it is spent hard at work in a laboratory; but the 12 student researchers selected for Johns Hopkins Institute for NanoBioTechnology (INBT) Research Experience for Undergraduates (REU) still had plenty of fun. Here are highlights of their experience working, living, and playing at Johns Hopkins University this summer. INBT’s NanoBio REU is funded by the National Science Foundation.

Ten weeks of intensive research

Nanobio REU 2009: First Row, l-r: INBT ed. prog. coordintor Ashanti Edwards, Olusoji Afuwape. Second Row: Lawrence Lin, Stefanie Gonzalez, Stephanie Naufel, Hannah Wilson, Amber Ortega. Back row: Chao Yin, Steven Bolger, Ranjini Krishnamurthy, Alex Federation, John Jones Molina. (Spiro/INBT)
Nanobio REU 2009: First Row, l-r: INBT ed. prog. coordinator Ashanti Edwards, Olusoji Afuwape. Second Row: Lawrence Lin, Stefanie Gonzalez, Stephanie Naufel, Hannah Wilson, Amber Ortega. Back row: Chao Yin, Steven Bolger, Ranjini Krishnamurthy, Alex Federation, John Jones Molina. (Spiro/INBT)

Each REU student conducted research for 10 weeks in the lab of an INBT affiliated faculty member who served as their principle investigator (PI). Students were mentored by a graduate student or postdoctoral fellow in the faculty member’s lab and developed research projects that could be feasibly completed within this time. Findings were presented at a collaborative poster session. (See section below.)

“When I came to Johns Hopkins, I expected people to be more cutthroat about their work. What I found was that people are very serious about their work, but at the same time they were laid back, approachable and helpful, which made it even better. I would recommend this program to anyone.”  ~Alex Federation, University of Rochester

“I had previously planned to just get my master’s degree and stop, but I had such a great experience that I am now considering getting my PhD.” ~ Ranjini Krishnamurthy, Johns Hopkins University

Beyond the lab

Chao Yin worked at the School of Medicine (Bailey/JHU)
Chao Yin worked at the School of Medicine (Bailey/JHU)

To expose the REU students to concepts and ideas beyond the laboratory, INBT hosted four professional development seminars during June and July. Anyone on campus was welcome to attend these seminars. REU participants had the opportunity to listen to professionals discuss  wide-ranging topics. Talks covered intellectual property, how to market a new technology, how science makes it into the news, and what to expect after graduation. These hour-long talks featured speakers John Fini, director of Intellectual Property for the Homewood schools; Charles Day, senior editor at Physics Today; Tim Weihs, professor of Materials Science and Engineering and co-founder of Reactive NanoTechnologies (makers of NanoFoil®); and Matthew Lesho, Biomedical Engineer with Northrop Grumman Electronic Systems and Hopkins alumnus.

“My lab was great. Everyone was hard working but at the same time they joked around so that made it fun. I enjoyed INBT’s professional development seminars because they gave insight to subjects outside of basic science.”   ~ Chao Yin, Duke University

Unique opportunities

REU student Kayode Sanni, 3rd from left, and assistant prof. Jeff Gray, center, travelled to the RosettaCON 2009 conference in Leavenworth, WA, where Sanni presented his research poster. (Gray Lab/JHU)
REU student Kayode Sanni, 3rd from left, traveled with PI assistant prof. Jeff Gray, center, and the entire Gray Lab to the RosettaCON 2009 conference in Leavenworth, WA, where Sanni presented his research poster. (Gray Lab/JHU)

 

Students integrated fully into the labs where they worked. Research completed by an REU participant could be published on its own, or become part of published work via their PI at some point in the future–and this is a goal.  Principle investigators and mentors work with students to quickly design projects of scientific merit so that research is not merely an exercise, but fulfills the goal of being a “research experience for undergraduates.”  INBT labs to which students are assigned engage in some of the most advanced nanobiotechnology research in the world.  Some students may be able to travel to scientific conferences to present their findings.  Even without this opportunity, however, INBT’s REU participants truly learn what the life of a researcher is like.

Laboratory tours

 

Research undergraduates toured the Molecular Imaging Center at the Johns Hopkins School of Medicine. (Spiro/INBT)
Research undergraduates toured the Molecular Imaging Center at the Johns Hopkins School of Medicine. (Spiro/INBT)

The students had an opportunity to tour the Molecular Imaging Center and Cancer Functional Imaging Core, located in the Broadway Research Building Animal Facility at the Johns Hopkins School of Medicine. The Molecular Imaging Center contains facilities for PET and SPECT scans, MRI and spectroscope, ultrasound, optical imaging, a “faxitron” radiography system and an irradiator. A collection of small research animals used for research also is housed in this building. Elena Artemova, administrative coordinator for the center, provided the students with a comprehensive tour.

Collaborative poster session

At the conclusion of the REU program, participants gathered with other research students from across the John Hopkins University campus for an interdisciplinary research poster session at the School of Medicine. More than 80 students from four divisions, including engineering, medicine, arts and science, and public health, presented posters at this session.

 

Stephanie Naufel and Olusoji Afuwape at collaborative poster session. (Spiro/INBT)
Stephanie Naufel and Olusoji Afuwape at collaborative poster session. (Spiro/INBT)

“I learned a lot and definitely learned how to be a researcher. I gained a better appreciation for the amount of work that goes into each research project.” ~ Stefanie Gonzalez, Milwaukee School of Engineering

“It was challenging and I consider that fun. Originally I was only interested in neuroscience, but through this project, I was exposed to the field of epigenetics so that is something I am willing to pursue. It definitely changed my perception about what I wanted to do.” ~ Olusoji Afuwape, University of Illinois at Chicago

Enjoying life in Baltimore

Baltimore  is a city rich in cultural diversity, and there is always plenty to do.  INBT’s summer nanobio REU students saw the Baltimore Orioles play basebal, enjoyed pizza parties and ice cream socials, and had a chance to try some authentic Maryland steamed crabs. They also got to make friends from different parts of the country who were interested in different disciplines. The REU program provides housing, a stipend, and organized group activities with other summer research program participants so that students have the opportunity to meet people from different backgrounds.

 

Maryland's authentic steamed crabs. (Spiro/JHU)
Maryland’s authentic steamed crabs. (Spiro/JHU)

“INBT’s summer REU program is a great way to have networking opportunities with other students, to be interdisciplinary in your research and to learn about different areas of research that you had not thought about before.” ~ Amber Ortega, New Mexico Institute of Mining and Technology

“Although working in a lab with a principle investigator like Doug Robinson was really intense, it pushed me to my limit and I learned a lot. Also the city aspect was nice since I have lived in a small town all my life. There is a lot of culture in Baltimore and that’s what I like.” ~ Lawrence Lin, Rice University

Meet all of INBT 2009 summer nanobio REU students here.

For more information about the  INBT Nanobio REU, click here.

Story by Mary Spiro

Baltimore nonprofit partners with INBT to sponsor ‘at-risk’ summer scholars

A stable home and a good education are keys to success that many children take for granted. Two Johns Hopkins faculty members have teamed up with a local nonprofit to make sure two academically capable but life-challenged teens from Baltimore can have these same opportunities. Initiated by Doug Robinson, associate professor of cell biology in the School of Medicine and faculty affiliate of the Institute for NanoBioTechnology (INBT), two young men from Boys Hope Girls Hope of Baltimore participated in summer internships in Johns Hopkins laboratories. INBT financially supported the Boys Hope scholars with stipends.

Matthew Green-Hill and Deepak Kalra working in the Montell Lab (Mary Spiro/INBT)

Matthew Green-Hill and Deepak Kalra working in the Montell Lab (Mary Spiro/INBT)

“The main goal was to immerse them in a scientific lifestyle and culture. Their success was measured in terms of each student’s individual progress,” Robinson says. Robinson hosted scholar Donté Jones; Craig Montell, professor of biological chemistry in the School of Medicine, opened up his lab to Matthew Green-Hill. Jones, a sophomore and Green-Hill, a junior, both attend Archbishop Curley High School.

Unlike other programs that try to help children in troubled circumstances by placing them in court-ordered foster homes, students voluntarily apply to Boys Hope Girls Hope of Baltimore to have access to the services it provides, such as a stable home, tutoring, and counseling. Scholars may live together in an adult-supervised home in Baltimore city, but they don’t have to, says the organization’s executive director Chuck Roth.

Scholars attend local private schools, meet with tutors if they need to, earn a weekly allowance for personal expenses, and receive other types of emotional and financial support as needed. The organization has no legal guardianship of the children, Roth adds. As long as their school responsibilities are met, scholars may visit with their families whenever they wish. Roth emphasizes that scholars don’t have records of misbehavior or crime. “These are kids with good potential and who are motivated. They recognize education as a way out of their circumstances,” he says.

Students typically learn about Boys Hope Girls Hope through their school counselors, teachers, relatives, and even their peers. “One of my best friends got into the program, and I didn’t see him for a week. But then he came back and told me about it,” explains Green-Hill. “I literally was one of those kids who knocked on the door of the Boys Hope house and asked to be accepted. I want to be the first person in my family to go to college,” he adds.

At first Green-Hill joined Boys Hope as a non-residential participant, but his home-life was still unsettled. Between middle school and high school, Green-Hill attended seven different schools and moved between several eastern cities. Once his family settled more permanently in Baltimore, he was able to re-apply and move into the supervised Boys Hope home full-time.

Jones had been truant from school for more than two years before he reached the 7th grade and, by his own account, was headed for a “life on the streets.”

Donte Jones and Cathy Kabacoff in Robinson Lab. (Mary Spiro/INBT)

Donte Jones and Cathy Kabacoff in Robinson Lab. (Mary Spiro/INBT)

“It wasn’t that I didn’t like school,” Jones says, “It was just that no one made me go.” After Jones went to live with his aunt, all that changed. She encouraged him to apply to Boys Hope because she saw his academic potential.

Over the summer, Green-Hill was mentored by doctoral student Deepak Kalra in Montell’s biological chemistry lab at the School of Medicine. Kalra involved Green-Hill in as many components of his research as possible and taught him several molecular biology techniques.

“I found Matt to be very sharp and hard working,” Kalra says. “He kept a good record in his lab notebook. Sometimes when he would come to me with a question, I would be intentionally hard and tell him, ‘Go back and look it up in your notebook!’ After a few moments, he would figure it out.” Undaunted by Kalra’s “tough” mentoring, Green-Hill even came in on the weekends to help in the lab.

“At first I thought I wanted to work with athletes and become an orthopedic surgeon,” says Green-Hill, “but after a summer working in the lab, I also might want to go into research so that I can discover ways to help people heal faster.”

Jones also has his heart set on medicine but intends to study nursing when he graduates from high school. Working with research technician Cathy Kabacoff in the Robinson lab, Jones practiced basic lab skills, such as conducting a restriction enzyme digest and measuring protein concentrations. Because Jones had missed several years worth of school, Kabacoff, a former middle school teacher, also helped him improve his writing and mathematics skills. He developed a study plan to research answers to questions of interest to him, such as “What is the Big Bang Theory?” and “What is DNA?”

“For the last two years I’ve been thinking that I wanted to become a nurse, but I also like the science part; I wouldn’t mind working in a lab,” Jones says. “I am taking biology this school year and think I will be better prepared because of all that we worked on.”

Along with their lab work, Robinson and Montell required that the scholars participate in the weekly journal club meetings of the Post-baccalaureate Research Education Program (PREP).  PREP, a minority outreach program that targets recently graduated minority students with the goal of helping them hone their skills in preparation for application to PhD programs, provides a good source of young role models.

Montell says it was exciting to see how each scholar progressed. “They arrived with different skill sets and with different interests so their experiences have not been the same. But the earlier that you can participate in someone’s career, the more impact you can have. Due to our location in east Baltimore, we have a responsibility to give back to the community and this is one way we can do that,” Montell says.

Both scholars agree their experiences were positive.

“I know that you have to have teamwork in sports to be successful, but I didn’t know that you have to have teamwork in academics to be successful. This is why I like working with this lab,” Jones wrote in a summary report at the conclusion of his internship.

In his summary, Green-Hill wrote, “…I am happy to have been exposed to this field of medicine…it has made an impact on my thoughts of my future career and has also given me the experience that I will need to have for my college laboratory sciences.”

Story by Mary Spiro

For more information:

Doug Robinson’s Lab

Craig Montell’s Lab

Boys Hope Girls Hope of Baltimore

INBT researchers use LEGO to study what happens inside lab-on-a-chip devices

Johns Hopkins engineers are using a popular children’s toy to help them visualize the behavior of particles, cells and molecules in environments too small to see with the naked eye. These researchers are arranging little LEGO pieces shaped like pegs to recreate microscopic activity taking place inside lab-on-a-chip devices at a scale they can more easily observe. These lab-on-a-chip devices, also known as microfluidic arrays, are commonly used to sort tiny samples by size, shape or composition, but the minuscule forces at work at such a small magnitude are difficult to measure. To solve this small problem, the Johns Hopkins engineers decided to think big.

Led by Joelle Frechette and German Drazer, both assistant professors of chemical and biomolecular engineering in the Whiting School of Engineering, the team used beads just a few millimeters in diameter, an aquarium filled with goopy glycerol and the LEGO pieces arranged on a LEGO board to unlock mysteries occurring at the micro- or nanoscale level. Their observations could offer clues on how to improve the design and fabrication of lab-on-a-chip technology. Their study concerning this technique was published in the August 14 issue of Physical Review Letters. Both Drazer and Frechette are affiliated faculty members of Johns Hopkins Institute for NanoBioTechnology.

The idea for this project comes from the concept of “dimensional analysis,” in which a process is studied at a different size and time scale while keeping the governing principles the same. [Read more…]

Quantum dots spot epigenetic markers for early cancer detection

Jeff Wang, an associate professor of mechanical engineering, and biomedical engineering doctoral student Vasudev Bailey examine samples of modified DNA during a new test designed to detect early genetic clues linked to cancer. Photo by Will Kirk

Jeff Wang, an associate professor of mechanical engineering, and biomedical engineering doctoral student Vasudev Bailey examine samples of modified DNA during a new test designed to detect early genetic clues linked to cancer. Photo by Will Kirk

A researcher affiliated with Johns Hopkins Institute for NanoBioTechnology has developed a highly sensitive test using quantum dots to detect external chemical modifications to DNA called methylations. Alterations to DNA that do not involve a change in the genetic code, yet can influence gene expression, fall into the emerging science of epigenetics.

The nanotechnology based test for epigenetic markers could be used as an early detection method for cancer or to determine whether a particular cancer treatments is working or not. The research was performed by INBT affiliated faculty member Jeff Tza-Huei Wang,  an associate professor of mechanical engineering from the Whiting School of Engineering, and Stephen Baylin, deputy director of the Johns Hopkins Kimmel Cancer Center. Their findings were published in the August 2009 issue of Genome Research.  Read the full story from Johns Hopkins University News and Information here.

Additional resources

Visit Jeff Wang’s INBT profile page here.

How DNA methylation affects health.

Podcast: Nanotech method to study cell detachment could lead to improved cancer therapies

Peter Searson

Peter Searson

Cancer spreads from organ to organ when cells break free from one site and travel to another. Understanding this process, known as metastasis, is critical for developing ways to prevent the spread and growth of cancer cells. Peter Searson, Reynolds Professor of Materials Science and Engineering in the Whiting School of Engineering and director of the Institute for NanoBioTechnology, led a team of engineers who have developed a method to specifically measure detachment in individual cells.

The method, which uses lab-on-a-chip technology, allows researchers to observe and record the exact point when a cell responds to electrochemical cues in its environment and releases from the surface upon which it is growing. Better knowledge of the biochemistry of cell detachment could point the way to better cancer therapies. In this “Great Ideas” podcast, Elizabeth Tracey, communications associate for the School of Medicine, interviews Searson about this current research.

“…We know that processes like cell detachment are important in cancer metastasis, where cells become detached from tumors…” Peter Searson

Click here to listen:  Great Ideas Podcast: Peter Searson

Related links:

You can watch a video and read more about Searson’s method of studying cell detachment here.

Peter Searson’s INBT profile page.

This podcast was originally posted to the Johns Hopkins University “Great Ideas” web page. To view the original posting, click here.

Hopkins summer scholar research poster session set for Aug. 4

Dozens of students in summer programs across campus, including 12 students from Johns Hopkins Institute for NanoBioTechnology (INBT) REU program, will display the results of their research efforts during a poster session Tues., Aug. 4 from 4 to 6 p.m. in Turner Concourse at the School of Medicine. REU stands for Research Experience for Undergraduates and is a program funded by the National Science Foundation.

INBT’s highly competitive nanobiotechnology REU program chooses students with excellent academic records who express interest in continuing research in graduate school. The students work with INBT affiliated faculty advisers and graduate student mentors to complete a 10-week research project. The application process for the 2010 REU program will begin in December 2009 and closes in mid February 2010.

Ashanti Edwards, INBT’s senior education program coordinator, says, “We believe that it is beneficial for the students to present their research in the form of a poster. This allows the students to practice communicating their research to a broader audience and prepares them for research poster sessions that they will have in graduate school.”

In 2008,  more than 80 students working in laboratories from across the Johns Hopkins University participated in this poster session. The event is free and open to all students, faculty and staff.

Students from INBT’s summer REU program will present the following posters. REU students’ names are in parentheses following the poster title and authors:

  • A Functional Investigation of Potential Molecular Components in Active DNA Demethylation. Olusoji (Yemi) Afuwape, Junjie Guo, Guo-li Ming.  (Olusoji (Yemi) Afuwape, University of Illinois at Chicago)
  • A Synthetic FGF1 Mimetic Peptide: Studies of FGFR3 Binding and Activation. Alexander Federation. Alexander Federation, Jesse Placone, Fenghao Chen, Kalina Hristova. (Alexander Federation, University of Rochester)
  • Relating ECM Stiffness to Cancer Cell Motility. Ranjini Krishnamurthy, Stephanie Fraley, Denis Wirtz. (Ranjini Krishnamurthy, Johns Hopkins University)
  • Nerve Guide Treatment for PNS Damage in Rats. Amber J. Ortega, Shawn H. Lim, Hai-Quan Mao. (Amber Ortega, New Mexico Institute of Mining and Technology)
  • A silica superparamagnetic method for automated methylation analysis. Chao Yin, Vasudev Bailey, Brian Keeley, Yi Zhang, Stephen Baylin, James Herman, Tza-Huei Wang. (Chao Yin, Duke University)
  • Characterization and Colloidal Stability of Surface Oxidized Single-and Multi-Walled Carbon Nanotubes. Hannah Wilson, Kevin Wepasnick, Howard Fairbrother. (Hannah Wilson, University of Maryland Baltimore County)
  • Characterization of the cell cycle dependency of the actin cap. John A. Jones Molina, Shyam Khatau, Denis Wirtz. (John A. Jones Molina, University of Puerto Rico, Rio Piedras Campus)
  • Functionalizing complex, microfabricated curved structures to selectively pattern fibroblasts in 3D. Stefanie M. Gonzalez, Mustapha Jamal, Elizabeth Cha, David Gracias. (Stefanie Gonzalez, Milwaukee School of Engineering)
  • The Development of Organic Nanobioelectronics for Neural Applications.  Stephanie Naufel, Stephen Diegelmann, John D. Tovar. (Stephanie Naufel, Arizona State University)
  • VEGF and substrate compliance upregulate MMP expression in EPCs in in vitro capillary-like structure formation.  Steven Bolger, Donny Hanjaya-Putra, Sharon Gerecht. (Steven Bolger, Duke University)
  • Effects of Substrate Adhesion on Mechanistic Properties of Cytokinesis. Lawrence Lin, Alexandra Surcel, Doug Robinson. (Lawrence Lin, Rice University)

Related Links:

Meet INBT’s summer 2009 REU students

INBT REU program page

Devreotes receives Hay Professorship in Embryology

Peter Devreotes

Peter Devreotes

Peter N. Devreotes, professor and director of the Department of Cell Biology at the Johns Hopkins School of Medicine, received the Isaac Morris Hay and Lucille Elizabeth Hay Professorship in Embryology in a June 12 dedication at the Welch Medical Library. Devreotes also serves on the Executive Committee of the Johns Hopkins Institute for NanoBioTechnology.

Using the amoeba Dictyostelium as a model system, Devreotes’ research focuses on identifying the genes responsible for a cell’s “sense of direction.” During embryogenesis and in the adult, cells use chemical gradients to direct their movements to find and maintain their proper positions. The process, referred to as chemotaxis, is not only found in normal physiology but in inflammatory diseases and cancer metastasis.

Devreotes graduated Phi Kappa Phi with a bachelor’s degree in physics from the University of Wisconsin, Madison, Wisc. He graduated summa cum laude with a doctorate in biophysics from The Johns Hopkins University. He was elected to The National Academy of Sciences in 2005 and also won a National Institutes of Health Merit Award that same year.

Schafer named civil engineering chair

Benjamin Shafer

Benjamin Shafer

Benjamin Schafer, associate professor of civil engineering and affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology, became chair of the Department of Civil Engineering, as of July 1.

Schafer’s area of research involves thin-walled structures. Thin-walled structures aim to maximize strength and efficiency while minimizing the cost, and as a result, stability plays a crucial role in their behavior. Much of Schafer’s research involves common construction materials, such as metals, wood and plastic. But with regard to nanobiotechnology, Schafer also is looking to a naturally occurring thin-walled structure-the cell. In particular, he has studied the cell’s mechanical response via the crosslinking and bundling of actin fibers with INBT’s associate director and professor of chemical and biomolecular engineering Denis Wirtz.

[Read more…]

Bringing a nanotechnology to market: a faculty perspective

Tim Weihs

Tim Weihs of the Johns Hopkins University Whiting School of Engineering will be the next guest speaker for the Institute for NanoBioTechnology (INBT) Professional Development Seminars on July 8, at 11 a.m. in 110 Maryland Hall. Weihs, a professor of materials science and engineering, is co-founder of Reactive NanoTechnologies (RNT), which produces NanoFoil®.

RNT makes the patented NanoFoil® at its Hunt Valley, Md. facility. This new class of nano-engineered material is fabricated by vapor-depositing thousands of alternating layers of aluminum and nickel. The foil can be activated electrically, optically or via a heat source to deliver localized temperatures up to 1500C in just fractions of a second. The foil can be used for applications requiring rapid and precise bonding, such as attaching an LED to a circuit board.

Tim Weihs received a B.S. from Dartmouth College in 1983, an M.E. from Thayer School of Engineering in 1985, and a Ph.D. in Materials Science and Engineering from Stanford University in 1990. He worked as a NATO postdoctoral fellow in the Department of Materials at Oxford University, and completed a second postdoctoral study in the Chemistry and Materials Science Department at Lawrence Livermore National Laboratory. In 1995, he joined the faculty in the Department of Materials Science and Engineering at Johns Hopkins University. Weihs is also an INBT affiliated faculty member.

In 2002, Weihs took a leave of absence from Hopkins to co-found Reactive NanoTechnologies with Omar Knio, a Hopkins professor in the department of Mechanical Engineering. After growing the company to the point of first commercial sales, Weihs returned to full-time teaching and research duties but maintains a small role with RNT as its Chief Technical Officer. His awards include a National Science Foundation Career Award, a 3M Young Faculty Fellowship, an R & D 100 Award, and an Innovator of the Year Award.

To attend this talk, please RSVP to Ashanti Edwards at aedwards@jhu.edu by July 7.

Reactive NanoTechnologies
http://www.rntfoil.com/site/

Tim Weihs’ Faculty Page
http://materials.jhu.edu/index.php/people/faculty/weihs