Gerecht nets American Heart Association grant

Sharon Gerecht, associate professor in the Department of Chemical and Biomolecular Engineering and affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology, has received the prestigious American Heart Association Established Investigator Award.

sharongerecht_cropThe AHA awarded only four such grants this year, funding designed to support mid-career of investigators who show unusual promise and accomplishments in the study of “cardiovascular or cerebrovascular science.”

Gerecht’s research focuses on engineering platforms, specifically hydrogels, that are designed to coax stem cells to develop into the building blocks of blood vessels. The hope is that these approaches could be used to help repair circulatory systems that have been damaged by heart disease, diabetes, and other illnesses.

Additionally, Gerecht leads a research project in the Johns Hopkins Physical Science-Oncology Center where she is studying the effects of low oxygen (hypoxia) on the tumor growth and blood vessel formation. The AHA funding will support her work on regulating hypoxia in hydrogels for vascular regeneration. The award is worth approximately $400,000 over five years.

Learn more about the Gerecht lab here.

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

Sciencescape rescues researchers from never-ending flow of published data

Screen Shot 2014-12-03 at 1.28.38 PMI like to listen to as much new music as I can. But I realized long ago that there would never be enough hours in the day or days in my lifetime to sift through all the new stuff to discover cool new tunes, even in the genres I preferred.

Scientists and engineers have similar problems staying current with research relevant to their disciplines. A report published in November 2012 by the International Association of Scientific, Technical and Medical Publishers estimated that 1.8 million papers are published in 28,000 academic journals every year. That’s a lot of data and a lot of discussion about that data. Another study published in 2007, reported that very little of this research is ever read by anyone. Only a wee bit of it is going to help your finish your dissertation, refine your protocol or provide the foundations to your next big breakthrough.

Thankfully some smart folks at Sciencescape.org have figured out a nifty way for you to sift through this mountain of virtual paper. Sciencescape pulls in data from available online journal databases, like PubMed, Google Scholar and many more going back to 1880. Using your chosen criteria, Sciencescape creates sort of a news feed of published research that may be important for you. You can use search criteria such as author, topic, journal name, and publication date. You can even keep track of research coming out of a specific lab or follow authors as you would follow people on Twitter.  Sciencescape uses Eigenfactor metrics, which pinpoints papers that are highly cited and by high impact journals, both good indicators that a paper is worth checking out. It helps you find the quality research. Sciencescape can even assist with finding papers on topics for your undergraduate journal club.

One especially cool feature of Sciencescape is the ability to set up a laboratory profile where the work of lab members can feed into one stream. That way you know what your colleagues  at the next lab bench or down the hall are publishing. By breaking down these virtual walls between labs, departments and even universities, Sciencescape facilitates collaborations, which is something Johns Hopkins Institute for NanoBioTechnology has fostered since inception.

The Sciencescape user interface is attractive and easy to read, which entices even someone like me (who is not actively engaged in research) into exploring a topic. It did not take me very long before I had fallen down a rabbit hole of knowledge! You can save papers to a library or share them on social media like Facebook and Twitter, because of course your mom and your college buddies want to know you are keeping up with current research in nanobiotechnology!

Sciencescape was listed by The Scientist magazine as a Top Innovation for 2014, and it is evident as to why. Now if they could only come up with an Eigenfactor metric that would work for music so I could avoid listening to music I probably wouldn’t like. PS, this is not a paid advertisement for Sciencescape, I just thought it seemed really useful. I am now keeping track of several INBT faculty researchers on Sciencescape.

Watch a video on Sciencescape here.

 

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Podcast: Artificial blood vessel visualizes cancer cell journey

Researchers from Johns Hopkins Institute for NanoBioTechnology are visualizing many of the steps involved in how cancer cells break free from tumors and travel through the blood stream, potentially on their way to distant organs.  Using an artificial blood vessel developed in the laboratory of Peter Searson, INBT director and professor of materials science and engineering, scientists are looking more closely into the complex journey of the cancer cell.

Figure 1. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue).

Figure 1. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue). (Wong/Searson Lab)

INBT’s science writer, Mary Spiro, interviewed device developer Andrew Wong, a doctoral student Searson’s  lab, for the NanoByte Podcast. Wong is an INBT training grant student. Listen to NANOBYTE #101 at this link.

Wong describes the transparent device, which is made up of a cylindrical channel lined with human endothelial cells and housed within a gel made of collagen, the body’s structural protein that supports living tissues. A small clump of metastatic breast cancer cells is seeded in the gel near the vessel while a nutrient rich fluid was pumped through the channel to simulate blood flow. By adding fluorescent tags the breast cancer cells, the researchers were able to track the cells’ paths over multiple days under a microscope.

VIDEO: Watch how a cancer cell approaches the artificial blood vessel, balls up and then forces its way through the endothelial cells and into the streaming fluids within the channel of the device. (Video by Searson Lab)

The lab-made device allows researchers to visualize how “a single cancer cell degrades the matrix and creates a tunnel that allows it to travel to the vessel wall,” says Wong. “The cell then balls up, and after a few days, exerts a force that disrupts the endothelial cells. It is then swept away by the flow. “

Wong said his next goal will be to use the artificial blood vessel to investigate different cancer treatment strategies, such as chemotherapeutic drugs, to find ways to improve the targeting of drug-resistant tumors.

Results of their experiments with this device were published in the journal Cancer Research in September.

Andrew Wong (left) and Peter Searson. (Photo by Will Kirk/Homewood Photography)

Andrew Wong (left) and Peter Searson. (Photo by Will Kirk/Homewood Photography)

Check out this gallery of images from the Searson Lab. The captions are as follows:
Figure 1. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue).
Figure 2. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a vessel with dual-labeled MDA-MB-231 breast cancer cells on the periphery.
Figure 3. Phase-contrast and fluorescence overlays depicting a functional vessel comprised of human umbilical vein endothelial cells (HUVECs) with dual-labeled MDA-MB-231 breast cancer cells on the periphery (green in the nucleus, red in the cytoplasm).

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

REU student profile: Christopher Glover

Christopher Glover is a rising senior in bioengineering at the University of Missouri. He worked this summer as an REU intern in the laboratory of professor Jeff Tza-Huei Wang, who has joint appointments in mechanical engineering, biomedical engineering and oncology. The Research Experience for Undergraduates, hosted by Johns Hopkins Institute for NanoBioTechnology, attracts nearly 800 undergraduate applicants for just 10 research positions.

Christopher Glover

Christopher Glover

Christopher’s project involved a proof-of-concept experiment to test a device used to digitally sort and amplify DNA samples.

The device consists of a silicone chip imprinted with 3,000 tiny wells to contain DNA. A thermoplastic lid covers the top of the chip to keep the DNA in place in the wells. After a segment of DNA is added to the chip, the number of copies of that DNA segment is amplified using a device called a thermal cycler. “The goal is to either get zero or one copy of the DNA segment in each well, which makes the device “digital,” he said.

“We aren’t concerned about the type of DNA we are amplifying but just to see if it will work,” Christopher said. “This could be used for medical screening where a specific allele could be detected within a gene to see if someone is more susceptible to getting a disease,” he said.

Christopher said that working in the Wang lab has helped him learn much more about nanotechnology than he had previously known. His future plans include earning a PhD in biomedical engineering.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

REU student Profile: Florencia Velez-Cortes

Florencia Velez-Cortes is a rising senior in physics and chemistry at The Ohio State University. As part of INBT’s REU program, she spent her summer as a research intern the chemical and biomolecular engineering laboratory of professor David Gracias. REU stands for Research Experience for Undergraduates and is a National Science Foundation program hosted by the Johns Hopkins Institute for NanoBioTechnology.

Florencia Velez-Cortes

Florencia Velez-Cortes

Florencia worked constructing bi-layers out of DNA and acrylamide gel. The combination of the two materials could be used the make biocompatible devices, such as microgrippers that could be used in tether-less surgery, she explained.

“The best part about this project is that we are working on something complete new and biocompatible that could even be responsive to chemical signals,” she explained.

Also because the material is composed of DNA, “it could be responsive to certain DNA sequences.”

Florencia said the most challenging thing for her this summer was working with people who are engineers, when she is not. “It’s been a steep learning curve for me but everyone has been really helpful and receptive to working with someone who is outside of their field.”

She also noted that the pace of research in the Gracias lab is a lot faster than what she is used to in her previous laboratory experiences. She said having a mentor she could talk to was integral to her success.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Nanobio film festival projects posted to YouTube

Each summer, I teach a course through Johns Hopkins Institute for NanoBioTechnology for our training grant students in science communication. The course, Science Communication for Scientists and Engineers: Video News Release (EN.670.609), teaches students methods for communicating their research to a nontechnical audience. Topics covered include conveying your research in 60 seconds, scripting, story boarding and video camera filming and techniques.

inbt-abstractMartin Rietveld, INBT’s web and animation director, and the staff at the Digital Media Center on the Homewood campus, also play an integral part in this short summer workshop. The class meets four times for lecture and discussion, where they are shown many science videos and discuss case studies on what works in communicating technical information to a lay audience. They visit the DMC and INBT’s animation studio. The student groups then have approximately five weeks to work independently on their projects. At the end of the course, students show their completed videos at the INBT film festival.

This year the film festival was held on July 23 with nearly 50 people in attendance. We had 12 filmmakers split into three groups of four students.  The topics and teams and resulting videos follow. Enjoy!

Cancer

Ivie Aifuwa, chemical and biomolecular engineering, Denis Wirtz Lab

Moriah Knight, materials science, Peter Searson Lab

Christopher Saeui, biomedical engineering, Kevin Yarema Lab

Zinnia Xu, biomedical engineering, Peter Searson Lab

Lab-on-a-Chip Technology

Prasenjit Bose, physics, Daniel Reich Lab

Sarah Friedrich, biomedical engineering, Jeff Wang Lab

Erin Gallagher, materials science and engineering, Peter Searson Lab

Yu Shi, physics, Daniel Reich Lab

In Vitro Models for Testing Drug Delivery

Max Bogorad, materials science and engineering, Peter Searson Lab

Alex Komin. materials science and engineering, Peter Searson Lab

Luisa Russell, materials science and engineering, Peter Searson Lab

Bin Sheng Wong, chemical and biomolecular engineering, Konstantinos Konstantopoulos Lab

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

 

 

REU student profile: Rebecca Majewski

DNA, the genetic sequence that tells cells what proteins to manufacture, typically resides inside the nucleus of a cell, but not always. Rebecca Majewski is studying the uptake of DNA into cell nuclei using a different polymer chains. Rebecca is a rising senior in BioMolecular Engineering from the Milwaukee School of Engineering and is working as a summer intern in the Johns Hopkins Institute for Nanobiotechnology’s REU program.

“We are interested in how much of the DNA with the polyplex can get into the nucleus,” she said, but explains that DNA associated outside of the nucleus can cause false higher measurements.

Rebecca Majewski. Photo by Mary Spiro

Rebecca Majewski. Photo by Mary Spiro

Rebecca is washing the cells with the nuclei to get rid of DNA outside the nucleus and then comparing the measurement of uptake of the DNA by the cell versus the measurement of the uptake of DNA by the nucleus.

“We are interested in what DNA gets inserted into the nucleus because that is what is ultimately expressed. It is important to find out how much makes it to the final destination and then is expressed. The goal of this work is to test different polymer chains to see which one actually does the better job of getting the DNA into the nucleus,” she said.

Rebecca works alongside PhD students and postdoctoral fellows in the biomedical engineering lab of Jordan Green lab at the Johns Hopkins School of Medicine. She says she highly values the opportunity for a research experience through INBT’s REU because her undergraduate institution does not train graduate students.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Three new science and engineering films to premiere at INBT fest

INBT’s Annual SCIENCE and ENGINEERING Film Fest is Wednesday, July 23 at 10:30 a.m. in Schaffer 3 at Johns Hopkins University Homewood campus. Students from the summer class Science Communication for Scientists and Engineers: Video News Releases will be presenting their final projects and be availablmovie_clapper_board_clip_art_23354e for question and answer about their video news releases.

Film topics this year include drug delivery, lab-on-a-chip technology and how cells become cancerous. Don’t miss this opportunity to see the students’ work up on the big screen!!!!!!! This event is open to the entire Johns Hopkins community. FREE.

Facebook event page here.

Check out a previous video made in this class:

REU student profile: Ian Reucroft

Sitting at what looks like a pottery wheeled turned on its side, Ian Reucroft is using a method called electrospinning to create a nano-scale polymer fiber embedded with a drug that encourages nerve growth. The strand is barely visible to the eye, but the resulting fibers resemble spider web.

Ian Reucroft, a rising junior in Biomedical Engineering at Rutgers University, is working in the medical school campus laboratory of Hai-Quan Mao, professor of materials sciences and engineering at Johns Hopkins University. He is part of Johns Hopkins Institute for NanoBioTechnology’s summer REU, or research experience for undergraduates program.

Ian Reucroft in the Mao lab. Photo by Mary Spiro.

Ian Reucroft in the Mao lab. Photo by Mary Spiro.

“We are developing a material to help regrow nerves, either in central or peripheral nervous systems,” said Ian. One method of doing that he explained is to make nanofibers and incorporating a drug into those fibers, drugs that promote neuronic growth or cell survival or various other beneficial qualities. The Mao lab is looking into a relatively new and not well-studied drug called Sunitinib that promotes neuronal survival.

“We make a solution of the component to make the fiber, which is this case is polylactic acid (PLA), and the drug, which I have to dissolve into the solution,” Ian said. Although the drug seems to remain stable in solution, one of the challenges Ian has faced has been improving the distribution of the drug along the fiber.

This is Ian’s first experience with electrospinning but not his first time conducting research. He plans to pursue a PhD in biomedical engineering and remain in academia.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

The IMEC blog and why you should read it

Every summer since 2009, Johns Hopkins Institute for NanoBioTechnology has been sending students to the lovely town of Leuven in Belgium to conduct 10 weeks of research at IMEC, that country’s leader in nanoelectronics fabrication and testing. The students, both undergraduates and pre-doctoral students, collaborate on projects coordinated by Hopkins and IMEC faculty.

The research program is co-funded by the National Science Foundation International Research Experience for Students (IRES) program, by INBT and by IMEC. Travel, housing and a stipend are covered for each student. They work hard during the week, but weekends are open for European travel, which they all take advantage of.

IMEC summer researchers from left, Matthew Gonzalez, Polly Ma, Rustin Golnabi and Eugene Yoon.

IMEC summer researchers from left, Matthew Gonzalez, Polly Ma, Rustin Golnabi and Eugene Yoon.

We ask the students to blog about their experiences there. Four students are currently working at IMEC for summer 2014. This year the blog has been pretty active, so we invite you to check it out. Find out what it is like to conduct research in a foreign country. Find out about Belgian beer. Experience their summer away vicariously through their writings and photos.

You can find the IMEC blog here.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.