Chakravarthy: edging toward breakthroughs in nanomedicine

Krishnan Chakravarthy is a resident physician in the Department of Anesthesiology and Critical Care Medicine at the Johns Hopkins Hospital. He is also the founder of a company called NanoAxis. He is seeking potential faculty collaborators through Johns Hopkins Institute for NanoBioTechnology, where he is a recently affiliated faculty member.

Krishnan Chakravarthy

Krishnan Chakravarthy

Chakravarthy launched NanoAxis in 2009 while earning an MD and PhD at SUNY Buffalo. He won the Henry A. Panasci Jr. Technology Entrepreneurship Competition sponsored by the University of Buffalo School of Management with a business plan for creating a new drug delivery mode for seasonal and pandemic flu using quantum dots and gold nano particles.

He is the remaining founder and owner of NanoAxis and says the company has grown significantly since 2009. NanoAxis now has active labs and collaborators both nationally and internationally. The company is now taking root in Maryland, and Chakravarthy says he is actively working on collaborating with local biotech businesses in the area.

INBT: Can you briefly summarize your company’s main goals?

KC: At inception, we were primarily interested as a business to commercialize quantum dot technology for various industrial applications. Over the course of six years, our business goals have shifted from large-scale nano materials manufacturing to being the world leader in developing paradigm-shifting technologies in the field of nano medicine. For us, this comprises nano particle enabled advances in drug delivery and smart design point-of-care devices using nanotechnology.

At present, we have four main preclinical candidates that we are working on with the eventual goal of beginning FDA clinical trials. One project involves a novel antiviral therapy for seasonal and pandemic influenza that we are actively developing with the US Centers for Disease Control. This antiviral therapy also has shown to have therapeutic benefits in the treatment of Ebola virus.

In the realm of neuroscience, we have efforts to target Alzheimer’s disease, chronic pain, and depression using nano particles that deliver micro RNA and signal interference RNA designed to up-regulate and down-regulate key proteins. The preclinical data from both in vitro and in vivo studies look extremely promising.

Furthermore, we are currently in developing of two hand-held devices for screening for infections related to prosthetic implants (such as joint replacement). They could be used in the operating room and clinics across the US. Our goal is for orthopedic surgeons to be able to measure specific infection markers at their fingertips to enable them to make safe and cost-effective medical management decisions based on an accurate and precise screening tool. One of the devices will be iPhone compatible, while the other we are developing as a stand-alone device that would be ideal for markets in developing countries.

Our hope is that our platform will extend to diagnosing infectious diseases, be used in the Intensive Care Unit for basic metabolic panel measurements and be extended to a host of other medical applications. We will likely begin FDA clinical trials for these devices by early 2016.  I am also working on developing a platform for detection of various disease processes using nanotechnology and breath as a medium for detecting specific breath-based biomarkers.

INBT: What sort of collaborations are you hoping to establish?

KC: I am hoping to use the extensive knowledge at INBT and at Hopkins to help further our development efforts. As an affiliated faculty, I feel honored to be part of such an impressive think tank of scientists and entrepreneurs. I believe nanotechnology is at the heart of the bench-to-bedside paradigm. It is one component of the growing medical revolution that is happening around the world. In addition, unlike any other industry or science, nano medicine advances are going to be interdisciplinary and collaborative. So teamwork, collaboration, and collective ideas are going to push ongoing advances and development.

INBT: What are the main research challenges you would like to address?

KC: At present, the main stumbling block will be pushing our technology through FDA clinical trials. The process is long, tedious, and expensive. In addition, preclinical data has to be sound. So refinement of the nano materials to find the ideal candidate to deliver the gene or drug will require creativity and repeated experimentation. In addition, when thinking about the ultimate goal of seeing these drugs being used in patients, large-scale production becomes an important component to address.  It has to be of consistent quality, safe, and easily reproducible in large quantities.  So these are things we need to think about from an industrial perspective when you are no longer in the academic realm.

INBT: Anything else people should know?

KC: I am looking forward to working with other INBT faculty.  We are always open to new ideas, and my research team would be more than willing to start new projects.  Likewise, we will also try and suggest areas that we think specific faculty would be suitable for project development.

Visit the Chakravarthy Research Group Website: www.nanoaxisllc.com

Recent Publications:

Jacob A, Chakravarthy K (2014-04-06 14:52:34 UTC) Engineering Magnetic Nanoparticles for Thermo-Ablation and Drug Delivery in Neurological Cancers. Cureus 6(4): e170. doi:10.7759/cureus.170

Jacob A, Chakravarthy K, Law M, et al. (2014-04-21 18:33:15 UTC) Neuroradiology, Anesthesia, Bioengineering, and Hardware Programming in the Clinical Applications of Deep Brain Stimulation. Cureus 6(4): e172. doi:10.7759/cureus.172

Upcoming Invited Talks:

Designing smart nano-systems for effective gene and drug delivery across the blood brain barrier.  12th Annual World Brain Mapping and Therapeutics Congress.  March 6-8, 2015, Los Angeles, USA

Selective abrogation of IL-12/IL-23 production provides novel therapeutic modality in combating lethal synergism of influenza and secondary pneumonia.  5th World Congress on Cell Science and Stem cell research.  March 23-25, 2015, Chicago, USA

Periodically Johns Hopkins Institute for NanoBioTechnology (INBT) features a brief profile on one of its affiliated faculty members. If you are an affiliated faculty member of INBT and would like to be featured, contact INBT’s science writer, Mary Spiro at mspiro@jhu.edu. If you wish to become an affiliated faculty member visit this link. http://inbt.jhu.edu/apps/faculty/join/

 

 

 

 

Poster presenters sought for Neuro X symposium

Johns Hopkins Institute for NanoBioTechnology (INBT) hosts its ninth annual symposium on May 1, 2015 in the Owens Auditorium on the Johns Hopkins medical campus. The theme for the speakers this year is Neuro X, where X stands for medicine, nanotechnology, engineering, science and more! Posters on any multidisciplinary theme are now being accepted. You do not have to be a member of an INBT affiliated laboratory to participate. Undergraduates, graduate students and postdoctoral fellows welcome. The event is free for Johns Hopkins associated persons. There is a fee for those outside of JHU/JHMI/JHH and is listed on the registration form.

Full details on poster guidelines and current information on the symposium can be found on the Neuro X website. To submit a poster or to simply register to attend the symposium, click here.

neuro-x-ad-flatThe symposium will begin at 8 a.m. with continental breakfast. Talks will begin at 9 a.m. and continue through 12:15 p.m. Speakers include: Alfredo Quiñones-Hinojosa, MD, FAANS, Professor of Neurological Surgery and Oncology Neuroscience and Cellular and Molecular Medicine; Jordan J. Green, PhD, Associate Professor of Biomedical Engineering, Ophthalmology, Neurosurgery, and Materials Science & Engineering; Ahmet Hoke MD, PhD, FRCPC, Professor, Neurology and Neuroscience; Patricia H. Janak, Professor, Department of Psychological and Brain Sciences/Department of Neuroscience in the Krieger School of Arts and Sciences; Piotr Walczak, MD, PhD, Associate Professor, Department of Radiology and Radiological Science; and Martin G. Pomper, MD, PhD, the William R. Brody Professor of Radiology and Radiological Science. This year’s symposium chairs are INBT director Peter Searson, Reynolds Professor, Materials Science and Engineering, and Dwight Bergles, Professor, the Solomon H. Snyder Department of Neuroscience, Department of Otolaryngology, Head & Neck Surgery.

The poster session will begin at 1:15 p.m. and conclude at 3:30 p.m. with poster prize presentations. Speaker talk titles, poster prizes and other details will be announced in the next few weeks. Don’t miss your chance to participate in one of Johns Hopkins largest, most popular and most well attended symposiums. Plan now to attend and present.

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

 

 

Gerecht nets American Heart Association grant

Sharon Gerecht, associate professor in the Department of Chemical and Biomolecular Engineering and affiliated faculty member of Johns Hopkins Institute for NanoBioTechnology, has received the prestigious American Heart Association Established Investigator Award.

sharongerecht_cropThe AHA awarded only four such grants this year, funding designed to support mid-career of investigators who show unusual promise and accomplishments in the study of “cardiovascular or cerebrovascular science.”

Gerecht’s research focuses on engineering platforms, specifically hydrogels, that are designed to coax stem cells to develop into the building blocks of blood vessels. The hope is that these approaches could be used to help repair circulatory systems that have been damaged by heart disease, diabetes, and other illnesses.

Additionally, Gerecht leads a research project in the Johns Hopkins Physical Science-Oncology Center where she is studying the effects of low oxygen (hypoxia) on the tumor growth and blood vessel formation. The AHA funding will support her work on regulating hypoxia in hydrogels for vascular regeneration. The award is worth approximately $400,000 over five years.

Learn more about the Gerecht lab here.

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

Sciencescape rescues researchers from never-ending flow of published data

Screen Shot 2014-12-03 at 1.28.38 PMI like to listen to as much new music as I can. But I realized long ago that there would never be enough hours in the day or days in my lifetime to sift through all the new stuff to discover cool new tunes, even in the genres I preferred.

Scientists and engineers have similar problems staying current with research relevant to their disciplines. A report published in November 2012 by the International Association of Scientific, Technical and Medical Publishers estimated that 1.8 million papers are published in 28,000 academic journals every year. That’s a lot of data and a lot of discussion about that data. Another study published in 2007, reported that very little of this research is ever read by anyone. Only a wee bit of it is going to help you finish your dissertation, refine your protocol or provide the foundations to your next big breakthrough.

Thankfully some smart folks at Sciencescape.org have figured out a nifty way for you to sift through this mountain of virtual paper. Sciencescape pulls in data from available online journal databases, like PubMed, Google Scholar and many more going back to 1880. Using your chosen criteria, Sciencescape creates sort of a news feed of published research that may be important for you. You can use search criteria such as author, topic, journal name, and publication date. You can even keep track of research coming out of a specific lab or follow authors as you would follow people on Twitter.  Sciencescape uses Eigenfactor metrics, which pinpoints papers that are highly cited and by high impact journals, both good indicators that a paper is worth checking out. It helps you find the quality research. Sciencescape can even assist with finding papers on topics for your undergraduate journal club.

One especially cool feature of Sciencescape is the ability to set up a laboratory profile where the work of lab members can feed into one stream. That way you know what your colleagues at the next lab bench or down the hall are publishing. By breaking down these virtual walls between labs, departments and even universities, Sciencescape facilitates collaborations, which is something Johns Hopkins Institute for NanoBioTechnology has fostered since inception.

The Sciencescape user interface is attractive and easy to read, which entices even someone like me (who is not actively engaged in research) into exploring a topic. It did not take me very long before I had fallen down a rabbit hole of knowledge! You can save papers to a library or share them on social media like Facebook and Twitter, because of course your mom and your college buddies want to know you are keeping up with current research in nanobiotechnology!

Sciencescape was listed by The Scientist magazine as a Top Innovation for 2014, and it is evident as to why. Now if they could only come up with an Eigenfactor metric that would work for music so I could avoid listening to music I probably wouldn’t like. PS, this is not a paid advertisement for Sciencescape, I just thought it seemed really useful. I am now keeping track of several INBT faculty researchers on Sciencescape.

Watch a video on Sciencescape here.

 

For all press inquiries regarding INBT, its faculty and programs, contact INBT’s science writer Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Podcast: Artificial blood vessel visualizes cancer cell journey

Researchers from Johns Hopkins Institute for NanoBioTechnology are visualizing many of the steps involved in how cancer cells break free from tumors and travel through the blood stream, potentially on their way to distant organs.  Using an artificial blood vessel developed in the laboratory of Peter Searson, INBT director and professor of materials science and engineering, scientists are looking more closely into the complex journey of the cancer cell.

Figure 1. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue).

Figure 1. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue). (Wong/Searson Lab)

INBT’s science writer, Mary Spiro, interviewed device developer Andrew Wong, a doctoral student Searson’s  lab, for the NanoByte Podcast. Wong is an INBT training grant student. Listen to NANOBYTE #101 at this link.

Wong describes the transparent device, which is made up of a cylindrical channel lined with human endothelial cells and housed within a gel made of collagen, the body’s structural protein that supports living tissues. A small clump of metastatic breast cancer cells is seeded in the gel near the vessel while a nutrient rich fluid was pumped through the channel to simulate blood flow. By adding fluorescent tags the breast cancer cells, the researchers were able to track the cells’ paths over multiple days under a microscope.

VIDEO: Watch how a cancer cell approaches the artificial blood vessel, balls up and then forces its way through the endothelial cells and into the streaming fluids within the channel of the device. (Video by Searson Lab)

The lab-made device allows researchers to visualize how “a single cancer cell degrades the matrix and creates a tunnel that allows it to travel to the vessel wall,” says Wong. “The cell then balls up, and after a few days, exerts a force that disrupts the endothelial cells. It is then swept away by the flow. “

Wong said his next goal will be to use the artificial blood vessel to investigate different cancer treatment strategies, such as chemotherapeutic drugs, to find ways to improve the targeting of drug-resistant tumors.

Results of their experiments with this device were published in the journal Cancer Research in September.

Andrew Wong (left) and Peter Searson. (Photo by Will Kirk/Homewood Photography)

Andrew Wong (left) and Peter Searson. (Photo by Will Kirk/Homewood Photography)

Check out this gallery of images from the Searson Lab. The captions are as follows:
Figure 1. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a functional vessel immunofluorescently stained for PECAM-1 (green) and nuclei (blue).
Figure 2. 3D projection of a confocal z-stack shows human umbilical vein endothelial cells (HUVECs) forming a vessel with dual-labeled MDA-MB-231 breast cancer cells on the periphery.
Figure 3. Phase-contrast and fluorescence overlays depicting a functional vessel comprised of human umbilical vein endothelial cells (HUVECs) with dual-labeled MDA-MB-231 breast cancer cells on the periphery (green in the nucleus, red in the cytoplasm).

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

REU student profile: Christopher Glover

Christopher Glover is a rising senior in bioengineering at the University of Missouri. He worked this summer as an REU intern in the laboratory of professor Jeff Tza-Huei Wang, who has joint appointments in mechanical engineering, biomedical engineering and oncology. The Research Experience for Undergraduates, hosted by Johns Hopkins Institute for NanoBioTechnology, attracts nearly 800 undergraduate applicants for just 10 research positions.

Christopher Glover

Christopher Glover

Christopher’s project involved a proof-of-concept experiment to test a device used to digitally sort and amplify DNA samples.

The device consists of a silicone chip imprinted with 3,000 tiny wells to contain DNA. A thermoplastic lid covers the top of the chip to keep the DNA in place in the wells. After a segment of DNA is added to the chip, the number of copies of that DNA segment is amplified using a device called a thermal cycler. “The goal is to either get zero or one copy of the DNA segment in each well, which makes the device “digital,” he said.

“We aren’t concerned about the type of DNA we are amplifying but just to see if it will work,” Christopher said. “This could be used for medical screening where a specific allele could be detected within a gene to see if someone is more susceptible to getting a disease,” he said.

Christopher said that working in the Wang lab has helped him learn much more about nanotechnology than he had previously known. His future plans include earning a PhD in biomedical engineering.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

REU student Profile: Florencia Velez-Cortes

Florencia Velez-Cortes is a rising senior in physics and chemistry at The Ohio State University. As part of INBT’s REU program, she spent her summer as a research intern the chemical and biomolecular engineering laboratory of professor David Gracias. REU stands for Research Experience for Undergraduates and is a National Science Foundation program hosted by the Johns Hopkins Institute for NanoBioTechnology.

Florencia Velez-Cortes

Florencia Velez-Cortes

Florencia worked constructing bi-layers out of DNA and acrylamide gel. The combination of the two materials could be used the make biocompatible devices, such as microgrippers that could be used in tether-less surgery, she explained.

“The best part about this project is that we are working on something complete new and biocompatible that could even be responsive to chemical signals,” she explained.

Also because the material is composed of DNA, “it could be responsive to certain DNA sequences.”

Florencia said the most challenging thing for her this summer was working with people who are engineers, when she is not. “It’s been a steep learning curve for me but everyone has been really helpful and receptive to working with someone who is outside of their field.”

She also noted that the pace of research in the Gracias lab is a lot faster than what she is used to in her previous laboratory experiences. She said having a mentor she could talk to was integral to her success.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Nanobio film festival projects posted to YouTube

Each summer, I teach a course through Johns Hopkins Institute for NanoBioTechnology for our training grant students in science communication. The course, Science Communication for Scientists and Engineers: Video News Release (EN.670.609), teaches students methods for communicating their research to a nontechnical audience. Topics covered include conveying your research in 60 seconds, scripting, story boarding and video camera filming and techniques.

inbt-abstractMartin Rietveld, INBT’s web and animation director, and the staff at the Digital Media Center on the Homewood campus, also play an integral part in this short summer workshop. The class meets four times for lecture and discussion, where they are shown many science videos and discuss case studies on what works in communicating technical information to a lay audience. They visit the DMC and INBT’s animation studio. The student groups then have approximately five weeks to work independently on their projects. At the end of the course, students show their completed videos at the INBT film festival.

This year the film festival was held on July 23 with nearly 50 people in attendance. We had 12 filmmakers split into three groups of four students.  The topics and teams and resulting videos follow. Enjoy!

Cancer

Ivie Aifuwa, chemical and biomolecular engineering, Denis Wirtz Lab

Moriah Knight, materials science, Peter Searson Lab

Christopher Saeui, biomedical engineering, Kevin Yarema Lab

Zinnia Xu, biomedical engineering, Peter Searson Lab

Lab-on-a-Chip Technology

Prasenjit Bose, physics, Daniel Reich Lab

Sarah Friedrich, biomedical engineering, Jeff Wang Lab

Erin Gallagher, materials science and engineering, Peter Searson Lab

Yu Shi, physics, Daniel Reich Lab

In Vitro Models for Testing Drug Delivery

Max Bogorad, materials science and engineering, Peter Searson Lab

Alex Komin. materials science and engineering, Peter Searson Lab

Luisa Russell, materials science and engineering, Peter Searson Lab

Bin Sheng Wong, chemical and biomolecular engineering, Konstantinos Konstantopoulos Lab

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

 

 

 

REU student profile: Rebecca Majewski

DNA, the genetic sequence that tells cells what proteins to manufacture, typically resides inside the nucleus of a cell, but not always. Rebecca Majewski is studying the uptake of DNA into cell nuclei using a different polymer chains. Rebecca is a rising senior in BioMolecular Engineering from the Milwaukee School of Engineering and is working as a summer intern in the Johns Hopkins Institute for Nanobiotechnology’s REU program.

“We are interested in how much of the DNA with the polyplex can get into the nucleus,” she said, but explains that DNA associated outside of the nucleus can cause false higher measurements.

Rebecca Majewski. Photo by Mary Spiro

Rebecca Majewski. Photo by Mary Spiro

Rebecca is washing the cells with the nuclei to get rid of DNA outside the nucleus and then comparing the measurement of uptake of the DNA by the cell versus the measurement of the uptake of DNA by the nucleus.

“We are interested in what DNA gets inserted into the nucleus because that is what is ultimately expressed. It is important to find out how much makes it to the final destination and then is expressed. The goal of this work is to test different polymer chains to see which one actually does the better job of getting the DNA into the nucleus,” she said.

Rebecca works alongside PhD students and postdoctoral fellows in the biomedical engineering lab of Jordan Green lab at the Johns Hopkins School of Medicine. She says she highly values the opportunity for a research experience through INBT’s REU because her undergraduate institution does not train graduate students.

For all press inquiries regarding INBT, its faculty and programs, contact Mary Spiro, mspiro@jhu.edu or 410-516-4802.

Three new science and engineering films to premiere at INBT fest

INBT’s Annual SCIENCE and ENGINEERING Film Fest is Wednesday, July 23 at 10:30 a.m. in Schaffer 3 at Johns Hopkins University Homewood campus. Students from the summer class Science Communication for Scientists and Engineers: Video News Releases will be presenting their final projects and be availablmovie_clapper_board_clip_art_23354e for question and answer about their video news releases.

Film topics this year include drug delivery, lab-on-a-chip technology and how cells become cancerous. Don’t miss this opportunity to see the students’ work up on the big screen!!!!!!! This event is open to the entire Johns Hopkins community. FREE.

Facebook event page here.

Check out a previous video made in this class: