2013 Annual Meeting of American Institute of Chemical Engineers highlights NanoBio research

The 2013 Annual Meeting of the American Institute of Chemical Engineers (AIChE) was held November 3-8 in San Francisco, CA. AIChE, the professional society for chemical engineers, hosted over 5,000 participants at the meeting, the largest AIChE conference yet. The conference offered great opportunities for learning about all aspects of chemical engineering and networking with movers and shakers from both academia and industry. I attended the conference and was one of several INBT-affiliated researchers to present my work, along with Kimberly Stroka (Konstantopoulos lab), Wei-Chiang Chen (Wirtz lab), and Pei-Hsun Wu (Wirtz lab). It was a great time to catch up with colleagues, and I met up with my undergraduate research advisor, friends from college, and past colleagues from Hopkins who have moved on to other institutions.

SanFrancisco-Annual2013-574-ssk_14602486The fascinating thing about the AIChE Annual Meeting is the wide variety of topics covered. The diversity of fields studied in chemical engineering has long been a source of pride for ChemE’s. I attended sessions covering topics as disparate as protein engineering, membrane separations, biosensors, industrial pharmaceuticals production, and cell migration, all while missing out on sessions about teaching, chemical engineering and the law, catalysis, and oil production. I was especially interested in research presented by industry professionals. These presentations gave me a new appreciation for the scope of industrial research projects, where changing one variable in a test tank can cost thousands and thousands of dollars.

Overall, the large number of sessions held at the conference provides great opportunities for students to give oral presentations, and undergraduate and graduate poster sessions enable even more students to publicize their projects. I would highly recommend the Annual Meeting for graduate and undergraduate chemical engineering students.

Colin Paul is a fourth-year PhD student in the laboratory of Konstantinos Konstantopoulos in the Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology.


Academic research internships are for grad students too

Cell migration assays

Before enrolling in the PhD program in the Department of Chemical and Biomolecular Engineering at Johns Hopkins, I didn’t know that academic internships were available for graduate students. When I was an undergraduate, I spent one summer working at a Research Experience for Undergraduates (REU) program at Iowa State University. REU programs are paid research internships that are funded by the National Science Foundation (NSF) and hosted by universities throughout the country, and they are well-advertised by academic advisors. They provide great opportunities for undergraduate students to see what full-time research in an academic setting is like before committing to graduate school. My undergraduate research experiences were instrumental as I made the decision to apply to PhD programs.

However, I didn’t realize that similar opportunities would be available once I’d entered grad school. I was very excited to learn that INBT offers an International Research Experience for Students (IRES) program that is open to both graduate and undergraduate students. This program offers an incredible opportunity to work internationally. By partnering with the Inter-University MicroElectronics Centre (IMEC) in Leuven, Belgium, INBT gives students the chance to work in IMECs microfabrication facilities to develop biomedical devices. They have incredible fabrication facilities at IMEC, and students traveling there learn a lot about how microelectronics manufacturing techniques can be translated to answer biological questions.

Leuven pic-web

In July and August of 2013, I visited IMEC to work on using new imaging techniques to study cell migration. We are trying to make cell motility studies easy, affordable, and high-throughput. Time-lapse motility experiments are typically limited to labs focused on cell motility because they require expensive microscopes and specialized equipment. Therefore, not every lab that cultures cells can perform these experiments, even though tests of cell motility can tell researchers a lot about other cellular behavior.

At IMEC, I worked on using an affordable imager that could be placed directly in cell culture incubators to study cells in wound healing, random motility, microcontact printing migration, and microchannel migration assays. We had some promising early results, and our collaboration is continuing. The internship provided me exposure to techniques I wouldn’t have otherwise known about, and I learned a lot about building collaborations with other researchers.

Colin Paul is a fourth-year PhD student in the laboratory of Konstantinos Konstantopoulos in the Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology.