Siebel scholars demonstrate INBT’s multidisciplinary advantage

Siebel scholar Laura Ensign. Photo by Marty Katz.

Four of the five recently named Johns Hopkins University graduate students who were listed among the 2013 Siebel Scholars are affiliated with Johns Hopkins Institute for NanoBioTechnology laboratories. Three of the four were also part of INBT’s Nanobio IGERT, or Integrative Graduate Education Research Traineeship, a National Science Foundation funded program. The Siebel Scholars program recognizes the most talented students at the world’s leading graduate schools of business, bioengineering, and computer science.

INBT affiliated winners include Laura Ensign, Mustapha Jamal, Garrett Jenkinson and Yi Zhang. Ensign, Jamal and Jenkinson were INBT IGERT fellows. All note that their involvement with INBT to one degree or another has played a role in their academic success at Hopkins.

Laura Ensign, in the Department of Chemical and BioMolecular Engineering, works in the laboratory of Justin Hanes, who is director of the Center for Nanomedicine and investigator with the Center of Cancer Nanotechnology Excellence (CCNE). Ensign’s research involves understanding the mucus barrier in the female reproductive tract and how it protects and also inhibits the delivery of drugs to this part of the body. Using specially engineered mucus penetrating nanoparticles designed in the Hanes labs, she is working on more effective drug delivery systems. Ensign is listed as an inventor on three patents that have been licensed to private industry.

“As an engineer, the multidisciplinary nature of INBT has allowed me to do research that has the potential to help patients in the clinic,” Ensign said. Furthermore, Ensign noted that having two advisors, a requirement for INBT’s IGERT program, played an important role in her graduate work and discoveries. In addition to being advised by Hanes, Ensign also was mentored by Richard Cone, professor in the Department of Biophysics in the Krieger School of Arts and Sciences. “The trajectory of my research has been greatly influenced by having two advisers with different backgrounds. My research has included engineering and formulation aspects, as well as biological and translational aspects, resulting in higher impact results with broader implications. “

Siebel scholar Mustapha Jamal

Mustapha Jamal, also in the Department of Chemical and Biomolecular Engineering, worked in the laboratory of associate professor David Gracias. Jamal has developed self-assembling structures that provide a framework for 3D tissue culture. In addition, these self-assembling structures let him study how geometry affects cell behavior. Jamal is a co-inventor on a patent application in connection with this research.

“Working in a multidiscplinary lab has helped me engineer miniaturized 3D cell culture platforms utilizing techniques from seemingly disparate research areas: semiconductor processing and tissue engineering,” Jamal said. “With a bit of creativity, this diverse skill set has proven useful in forging exciting and fruitful collaborations and should serve me well for years to come. From the annual INBT Symposium to the courses and workshops, I have shared my own research with the community and engaged in academic discussions that have helped me keep on top of research conducted here at Hopkins and abroad.”

Siebel scholar Garrett Jenkinson learning wet lab skills during INBT’s nanobio bootcamp. Photo by Mary Spiro.

Mathematics is the tool that W. Garrett Jenkinson uses in his research in the Complex Systems Science Laboratory of John Goutsias, professor of electrical and computer engineering. Jenkinson’s work can be applied to such real-life problems as how infections spread through a population via social interaction or how processes occur inside the cell, both of which can help inform the development of drugs to fight disease.

“The Complex Systems Science Laboratory takes the INBT spirit of interdisciplinary research to heart. The lab focuses on rigorous mathematical formulations that will simultaneously advance as many branches of science and engineering as possible,” Jenkinson said. “My graduate work has allowed me to follow my mathematical interests toward whatever application they might lead. In my tenure at Hopkins, I have published papers on a diverse array of topics including biochemical reaction networks, epidemiology, neurobiology, ecology, thermodynamics, unmanned automated vehicles, evolutionary game theory, pharmacokinetics, and social networks.

Through the IGERT program, Jenkinson said, INBT “trained me in fields that an electrical and computer engineer might otherwise find foreign, such as biology, nanotechnology, and wet lab techniques. Furthermore, the INBT has fostered relationships with my peers from diverse scientific backgrounds, with whom I have collaborated on multiple occasions to lend or receive advice in scientific matters that required expertise in multiple fields. I am excited to be joining the Siebel Scholars program which facilitates relationships across universities in the same way the INBT fosters these relationships across departments at Johns Hopkins University.”

Siebel scholar Yi Zhang. Photo by Mary Spiro.

Yi Zhang conducts his research in the lab of Jeff Tza-Huei Wang, an associate professor of mechanical engineering, biomedical engineering and oncology and also a project leader in the Center of Cancer Nanotechnology Excellence. Zhang’s work developing micro- and nanoscale molecular techniques to help diagnose cancer and infectious diseases has supported one of the core research goals of the CCNE. He is listed as an inventor on four patent applications, one of which has been licensed by a biotechnology company.

Said Zhang, “Being associated with an INBT affiliated laboratory offers me ample opportunities to collaborate with researchers in various fields and get help from my fellow students. Biomedical engineering is multidisciplinary in nature. My research focuses on bridging the gap between medical science and engineering, and my thesis is committed to improving molecular diagnostics using advanced nanotechnology. An integrated center like CCNE presents a new research paradigm by bringing together all necessary expertise from various fields to tackle one big problem in an extremely efficient way. It has definitely changed my view of conducting translational research.”

According to the organization’s website, Siebel Scholars and are chosen by the dean of their respective schools on the basis of outstanding academic achievement and demonstrated leadership. On average, Siebel Scholars rank in the top 5 percent of their class, many within the top 1 percent. The merit-based program provides $35,000 to each student for use in his or her final year of graduate studies.

The Siebel Scholars program was established in 2000 by the Siebel Foundation through a grant of more than $45 million to Carnegie Mellon University; Harvard University; The Johns Hopkins University; Massachusetts Institute of Technology; Northwestern University; Stanford University; Tsinghua University; University of California, Berkeley; University of California, San Diego; University of Chicago; University of Illinois at Urbana-Champaign; and University of Pennsylvania. Each year, five graduate students from each of the 17 partner institutions are honored as Siebel Scholars and receive a $35,000 award for their final year of studies.

Established in 2006, the Institute for NanoBioTechnology at Johns Hopkins brings together 223 researchers from every division of the University to create new knowledge and new technologies at the interface of nanoscience and medicine.

 

Leave a Comment

*